Advertisement

Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H+GAG: a Guided Ion Beam and Computational Study

  • A. Mookherjee
  • P. B. ArmentroutEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article

Abstract

We present a thorough characterization of fragmentations observed in threshold collision-induced dissociation (TCID) experiments of protonated glycylalanylglycine (H+GAG) with Xe using a guided ion beam tandem mass spectrometer. Kinetic energy dependent cross sections for nine ionic products were observed and analyzed to provide 0 K barriers for the six primary products: [b2]+, [y1 + 2H]+, [b3]+, CO loss, [y2 + 2H]+, and [a1]+; and three secondary products: [a2]+, [a3]+, and CH3CHNH2+, after accounting for multiple ion-molecule collisions, internal energy of reactant ions, unimolecular decay rates, competition between channels, and sequential dissociations. Relaxed potential energy surface scans performed at the B3LYP-GD3BJ/6-311+G(d,p) level of theory are used to identify transition states (TSs) and intermediates of the six primary and one secondary products (where the other two secondary products have mechanisms previously established). Geometry optimizations and single-point energy calculations were performed at several levels of theory. These theoretical energies are compared with experimental threshold energies and are found to give reasonably good agreement, with B3LYP-GD3BJ and M06-2X levels of theory performing better than other levels. The results obtained here are also compared with previous results for decomposition of H+GGG. The primary difference observed is a lowering of the threshold for the [b2]+ product ion and a concomitant suppression of the directly competing [y1 + 2H]+ product, the result of specific methylation of the [b2]+ product ion.

Keywords

Glycylalanylglycine Simple protonated peptide Reaction mechanisms Energetics Mobile proton Thermochemistry 

Notes

Acknowledgements

The authors acknowledge support for this work by the National Science Foundation, grant CHE-1664618, and grants of computational time from the Center for High Performance Computing at the University of Utah.

Supplementary material

13361_2019_2144_MOESM1_ESM.docx (3.9 mb)
ESM 1 (DOCX 3961 kb)

References

  1. 1.
    Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated diglycine decomposition: a computational study. J. Am. Soc. Mass Spectrom. 23, 621–631 (2012)CrossRefGoogle Scholar
  2. 2.
    Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated diglycine decomposition: a guided ion beam study. J. Am. Soc. Mass Spectrom. 23, 632–643 (2012)CrossRefGoogle Scholar
  3. 3.
    Mookherjee, A., Van Stipdonk, M.J., Armentrout, P.B.: Thermodynamics and reaction mechanisms of decomposition of the simplest protonated tripeptide, triglycine: a guided ion beam and computational study. J. Am. Soc. Mass Spectrom. 28, 739–757 (2017)CrossRefGoogle Scholar
  4. 4.
    Dookeran, N.N., Yalcin, T., Harrison, A.G.: Fragmentation reactions of protonated α-amino acids. J. Mass Spectrometry. 31, 500–508 (1996)CrossRefGoogle Scholar
  5. 5.
    Nold, M.J., Wesdemiotis, C., Yalcin, T., Harrison, A.G.: Amide bond dissociation in protonated peptides. Structures of the N-terminal ionic and neutral fragments. Int. J. Mass Spectrom. Ion Process. 164, 137–153 (1997)CrossRefGoogle Scholar
  6. 6.
    Reid, G. E., Simpson, R. J., O'Hair, R. A. J.: Probing the fragmentation reactions of protonated glycine oligomers via multistage mass spectrometry and gas phase ion molecule hydrogen/deuterium exchange. Int. J. Mass Spectrom. 190/191, 209–230 (1999)Google Scholar
  7. 7.
    Harrison, A.G., Csizmadia, I.G., Tang, T.-H.: Structure and fragmentation of b2 ions in peptide mass spectra. J. Am. Soc. Mass Spectrom. 11, 427–436 (2000)CrossRefGoogle Scholar
  8. 8.
    Harrison, A.G., Csizmadia, I.G., Tang, T.-H., Tu, Y.-P.: Reaction competition in the fragmentation of protonated dipeptides. J. Mass Spectrom. 35, 683–688 (2000)CrossRefGoogle Scholar
  9. 9.
    Rodriquez, C.F., Cunje, A., Shoeib, T., Chu, I.K., Hopkinson, A.C., Siu, K.W.M.: Proton migration and tautomerism in protonated triglycine. J. Am. Chem. Soc. 123, 3006–3012 (2001)CrossRefGoogle Scholar
  10. 10.
    El Aribi, H., Rodriquez, C. F., Almeida, D. R. P., Ling, Y., Mak, W. W.-N., Hopkinson, A. C., Siu, K. W. M.: Elucidation of fragmentation mechanisms of protonated peptide ions and their products: a case study on glycylglycylglycine using density functional theory and threshold collision-induced dissociation. J. Am. Chem. Soc. 125, 9229–9236 (2003)Google Scholar
  11. 11.
    El Aribi, H., Orlova, G., Rodriquez, C.F., Almeida, D.R.P., Hopkinson, A.C., Siu, K.W.M.: Fragmentation mechanisms of product ions from protonated tripeptides. J. Phys. Chem. B. 108, 18743–18749 (2004)CrossRefGoogle Scholar
  12. 12.
    Bythell, B.J., Barofsky, D.F., Pingitore, F., Polce, M.J., Wang, P., Wesdemiotis, C., Paizs, B.: Backbone cleavages and sequential loss of carbon monoxide and ammonia from protonated AGG: a combined tandem mass spectrometry, isotope labeling, and theoretical study. J. Am. Soc. Mass Spectrom. 18, 1291–1303 (2007)CrossRefGoogle Scholar
  13. 13.
    Paizs, B., Suhai, S.: Theoretical study of the main fragmentation pathways for protonated glycylglycine. Rapid Commun. Mass Spectrom. 15, 651–663 (2001)CrossRefGoogle Scholar
  14. 14.
    Paizs, B., Suhai, S.: Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. I. Cis-trans isomerization around protonated amide bonds. Rapid Commun. Mass Spectrom. 15, 2307–2323 (2001)CrossRefGoogle Scholar
  15. 15.
    Paizs, B., Suhai, S.: Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b2, y1, and y2 ions. Rapid Commun. Mass Spectrom. 16, 375–389 (2002)CrossRefGoogle Scholar
  16. 16.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005)CrossRefGoogle Scholar
  17. 17.
    Burlet, O., Orkiszewski, R.S., Ballard, K.D., Gaskell, S.J.: Charge promotion of low-energy fragmentations of peptide ions. Rapid Commun. Mass Spectrom. 6, 658–662 (1992)CrossRefGoogle Scholar
  18. 18.
    Cox, K.A., Gaskell, S.J., Morris, M., Whiting, A.: Role of the site of protonation in the low-energy decompositions of gas-phase peptide ions. J. Am. Soc. Mass Spectrom. 7, 522–531 (1996)CrossRefGoogle Scholar
  19. 19.
    Dongré, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996)CrossRefGoogle Scholar
  20. 20.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000)CrossRefGoogle Scholar
  21. 21.
    Chu, I.K., Siu, C.-K., Lau, J.K.-C., Tang, W.K., Mu, X., Lai, C.K., Guo, X., Wang, X., Li, N., Xia, Y., Kong, X., Oh, H.B., Ryzhov, V., Tureček, F., Hopkinson, A.C., Siu, K.W.M.: Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 390, 24–27 (2015)CrossRefGoogle Scholar
  22. 22.
    Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)CrossRefGoogle Scholar
  23. 23.
    Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99–111 (1988)CrossRefGoogle Scholar
  24. 24.
    Eckart, K., Holthausen, M.C., Koch, W., Spiess, J.: Mass spectrometric and quantum mechanical analysis of gas-phase formation, structure, and decomposition of various b2 ions and their specifically deuterated analogs. J. Am. Soc. Mass Spectrom. 9, 1002–1011 (1998)CrossRefGoogle Scholar
  25. 25.
    Harrison, A.G., Young, A.B., Schnoelzer, M., Paizs, B.: Formation of iminium ions by fragmentation of a2 ions. Rapid Commun. Mass Spectrom. 18, 1635–1640 (2004)CrossRefGoogle Scholar
  26. 26.
    Armentrout, P.B., Clark, A.A.: The simplest b2 + ion: determining its structure from its energetics by a direct comparison of the threshold collision-induced dissociation of protonated oxazolone and diketopiperazine. Int. J. Mass Spectrom. 316-318, 182–191 (2012)CrossRefGoogle Scholar
  27. 27.
    Bythell, B.J., Maitre, P., Paizs, B.: Cyclization and rearrangement reactions of an fragment ions of protonated peptides. J. Am. Chem. Soc. 132, 14766–14779 (2010)CrossRefGoogle Scholar
  28. 28.
    Verkerk, U.H., Siu, C.-K., Steill, J.D., El Aribi, H., Zhao, J., Rodriguez, C.F., Oomens, J., Hopkinson, A.C., Siu, K.W.M.: a2 ion derived from triglycine: an N1-protonated 4-imidazolidinone. J. Phys. Chem. Lett. 1, 868–872 (2010)CrossRefGoogle Scholar
  29. 29.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154119 (2010)CrossRefGoogle Scholar
  30. 30.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)CrossRefGoogle Scholar
  31. 31.
    Möller, C., Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)CrossRefGoogle Scholar
  32. 32.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120, 215–241 (2008)CrossRefGoogle Scholar
  33. 33.
    Ervin, K.M., Armentrout, P.B.: Translational energy dependence of Ar+ + XY → ArX+ + Y (XY = H2, D2, HD) from thermal to 30 eV C.M. J. Chem. Phys. 83, 166–189 (1985)CrossRefGoogle Scholar
  34. 34.
    Muntean, F., Armentrout, P.B.: Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections. J. Chem. Phys. 115, 1213–1228 (2001)CrossRefGoogle Scholar
  35. 35.
    Moision, R.M., Armentrout, P.B.: An electrospray ionization source for thermochemical investigation with the guided ion beam mass spectrometer. J. Am. Soc. Mass Spectrom. 18, 1124–1134 (2007)CrossRefGoogle Scholar
  36. 36.
    Heaton, A.L., Armentrout, P.B.: Thermodynamics and mechanism of the deamidation of sodium-bound asparagine. J. Am. Chem. Soc. 130, 10227–10232 (2008)CrossRefGoogle Scholar
  37. 37.
    Heaton, A.L., Moision, R.M., Armentrout, P.B.: Experimental and theoretical studies of sodium cation interactions with the acidic amino acids and their amide derivatives. J. Phys. Chem. A. 112, 3319–3327 (2008)CrossRefGoogle Scholar
  38. 38.
    Ye, S.J., Armentrout, P.B.: Absolute thermodynamic measurements of alkali metal cation interactions with a simple dipeptide and tripeptide. J. Phys. Chem. A. 112, 3587–3596 (2008)CrossRefGoogle Scholar
  39. 39.
    Carpenter, J.E., McNary, C.P., Furin, A., Sweeney, A.F., Armentrout, P.B.: How hot are your ions really? A threshold collision-induced dissociation study of substituted benzylpyridinium “thermometer” ions. J. Am. Soc. Mass Spectrom. 28, 1876–1888 (2017)CrossRefGoogle Scholar
  40. 40.
    Rodgers, M.T., Ervin, K.M., Armentrout, P.B.: Statistical modeling of collision-induced dissociation thresholds. J. Chem. Phys. 106, 4499–4508 (1997)CrossRefGoogle Scholar
  41. 41.
    Rodgers, M.T., Armentrout, P.B.: Statistical modeling of competitive threshold collision-induced dissociation. J. Chem. Phys. 109, 1787–1800 (1998)CrossRefGoogle Scholar
  42. 42.
    Armentrout, P.B.: Statistical modeling of sequential collision-induced dissociation. J. Chem. Phys. 126, 234302 (2007)CrossRefGoogle Scholar
  43. 43.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision a.02. Gaussian 09, Revision A.02 ed. Gaussian Inc., Pittsburgh, PA (2009)Google Scholar
  44. 44.
    Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., Petersson, G.A.: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822 (1999)CrossRefGoogle Scholar
  45. 45.
    Polfer, N.C., Oomens, J., Suhai, S., Paizs, B.: Spectroscopic and theoretical evidence for oxazolone ring formation in collision-induced dissociation of peptides. J. Am.Chem. Soc. 127, 17154–17155 (2005)CrossRefGoogle Scholar
  46. 46.
    Klassen, J.S., Kebarle, P.: Collision-induced dissociation threshold energies of protonated glycine, glycinamide, and some related small peptides and peptide amino amides. J. Am. Chem. Soc. 119, 6552–6563 (1997)CrossRefGoogle Scholar
  47. 47.
    Reid, G.E., Simpson, R.J., O’Hair, R.A.J.: A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M+H]+ ions. J. Am. Soc. Mass Spectrom. 9, 945–956 (1998)CrossRefGoogle Scholar
  48. 48.
    Pingitore, F., Polce, M.J., Wang, P., Wesdemiotis, C., Paizs, B.: Intramolecular condensation reactions in protonated dipeptides: carbon monoxide, water, and ammonia losses in competition. J. Am. Soc. Mass Spectrom. 15, 1025–1038 (2004)CrossRefGoogle Scholar
  49. 49.
    Armentrout, P.B., Heaton, A.L., Ye, S.J.: Thermodynamics and mechanisms for decomposition of protonated glycine and its protonated dimer. J. Phys. Chem. A. 115, 11144–11155 (2011)CrossRefGoogle Scholar
  50. 50.
    Wu, R., McMahon, T.B.: Infrared multiple photon dissociation spectroscopy as structural confirmation for GlyGlyGlyH+ and AlaAlaAlaH+ in the gas phase. Evidence for amide oxygen as the protonation site. J. Am. Chem. Soc. 129, 11312–11313 (2007)CrossRefGoogle Scholar
  51. 51.
    Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data. 27, 413–656 (1998)CrossRefGoogle Scholar
  52. 52.
    Uggerud, E., Hvistendahl, G., Rasmussen, B., Kinser, R.D., Ridge, D.P.: The unimolecular chemistry of protonated glycinamide and the proton affinity of glycinamide—mass spectrometric experiments and theoretical model. Chem. Eur. J. 2, 1143–1149 (1996)CrossRefGoogle Scholar
  53. 53.
    Cooper, T., Talaty, E., Grove, J., Van Stipdonk, M., Suhai, S., Paizs, B.: Isotope labeling and theoretical study of the formation of a3* ions from protonated tetraglycine. J. Am. Soc. Mass Spectrom. 17, 1654–1664 (2006)CrossRefGoogle Scholar
  54. 54.
    Bythell, B.J., Molesworth, S., Osburn, S., Cooper, T., Paizs, B., Van Stipdonk, M.: Structure and reactivity of an and an* peptide fragments investigated using isotope labeling, tandem mass spectrometry, and density functional theory calculations. J. Am. Soc. Mass Spectrom. 19, 1788–1798 (2008)CrossRefGoogle Scholar
  55. 55.
    Lam, K.H.B., Lau, J.K.-C., Lai, C.-K., Hopkinson, A.C., Siu, K.W.M.: Interconversion between 4-imidazolone ions; isomers of [b4]+ derived from protonated tetraglycine. J. Phys. Chem. B. 121, 9541–9547 (2017)CrossRefGoogle Scholar
  56. 56.
    Allen, J.M., Racine, A.H., Berman, A.M., Johnson, J.S., Bythell, B.J., Paizs, B., Glish, G.L.: Why are a3 ions rarely observed? J. Am. Soc. Mass Spectrom. 19, 1764–1770 (2008)CrossRefGoogle Scholar
  57. 57.
    Harrison, A.G.: The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 16, 201–221 (1997)CrossRefGoogle Scholar
  58. 58.
    Bleiholder, C., Suhai, S., Paizs, B.: Revising the proton affinity scale of the naturally occurring α-amino acids. J. Am. Soc. Mass Spectrom. 17, 1275–1281 (2006)CrossRefGoogle Scholar
  59. 59.
    Boles, G.C., Wu, R.R., Rodgers, M.T., Armentrout, P.B.: Thermodynamics and mechanisms of protonated asparaginyl-glycine decomposition. J. Phys. Chem. B. 120, 6525–6545 (2016)CrossRefGoogle Scholar
  60. 60.
    Boles, G.C., Wu, R.R., Rodgers, M.T., Armentrout, P.B.: Protonated asparaginyl-alanine decomposition: a TCID, SORI-CID, and computational analysis. J. Am. Soc. Mass Spectrom. 29, 2341–2359 (2018)CrossRefGoogle Scholar
  61. 61.
    Kempkes, L.J.M., Boles, G.C., Martens, J., Berden, G., Armentrout, P.B., Oomens, J.: Deamidation of protonated asparagine–valine investigated by a combined spectroscopic, guided ion beam, and theoretical study. J. Phys. Chem. A. 122, 2424–2436 (2018)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations