Advertisement

Quantitation of Glutathione by Quinoline-5, 8-Dione-Based Tag Strategy Using MALDI Mass Spectrometry

  • Liming Guo
  • Chunsheng XiaoEmail author
  • Sheng Wang
  • Tianyang Gao
  • Ling Ling
  • Xinhua GuoEmail author
Research Article

Abstract

In the present work, we developed an UV-absorptive and highly reactive tag aromatic molecule, quinoline-5,8-dione (QLD), for robust quantitative analysis of GSH by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The QLD could react with GSH with high efficiency at room temperature, and the resultant QLD-GSH conjugate could be readily detected by MALDI MS without interferences. By using the QLD tag, the detection limit of GSH was lowered to 10 fmol μL−1, which was four orders of magnitude higher than that detected without using the QLD tag. Furthermore, accurate quantitative measurements of GSH in solution were successfully demonstrated by using glutamic acid-cysteine-alanine (ECA) as an internal standard. By properly adjusting the ECA concentrations, the intensity ratio value of QLD-tagged GSH (QLD-GSH) to QLD-tagged ECA (QLD-ECA) displayed a good linearity with GSH concentrations in a broad range from 4 to 4000 μM. Finally, the GSH level in HeLa cell lysates was also successfully detected, and the results are consistent with that obtained by a colorimetric assay. In summary, the proposed QLD-based tag method should be a rapid, cost-/time-effective, and sensitive new method for quantitative determination of GSH by MALDI MS.

Graphical Abstract

Keywords

Matrix-assisted laser desorption/ionization mass spectrometry Quantification Glutathione Cells 

Notes

Acknowledgements

The authors acknowledge financial supported for this work by the National Natural Science Foundation of China (21874054, 21675060 and 21175056) and the Youth Innovation Promotion Association of CAS (2017266).

Supplementary material

13361_2019_2135_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1.16 mb)

References

  1. 1.
    Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D., Milzani, A.: Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci. 34, 85–96 (2009)CrossRefGoogle Scholar
  2. 2.
    Townsend, D.M., Tew, K.D.: Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomed. Pharmacother. 63, 75–78 (2009)CrossRefGoogle Scholar
  3. 3.
    Cabral, C.B., Bullock, K.H., Bischoff, D.J., Tompkins, R.G., Yu, Y.M., Kelleher, J.K.: Estimating glutathione synthesis with deuterated water: a model for peptide biosynthesis. Anal. Biochem. 379, 40–44 (2008)CrossRefGoogle Scholar
  4. 4.
    Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., Milzani, A.: Biomarkers of oxidative damage in human disease. Clin. Chem. 52, 601–623 (2006)CrossRefGoogle Scholar
  5. 5.
    Giustarini, D., Milzani, A., Dalle-Donne, I., Rossi, R.: Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol. Dis. 40, 174–179 (2008)CrossRefGoogle Scholar
  6. 6.
    Bouligand, J., Deroussent, A., Paci, A., Morizet, J., Vassal, G.: Liquid chromatography-tandem mass spectrometry assay of reduced and oxidized glutathione and main precursors in mice liver. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 832, 67–74 (2006)CrossRefGoogle Scholar
  7. 7.
    Giustarini, D., Milzani, A., Dalle-Donne, I., Rossi, R.: Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 851, 124–139 (2007)CrossRefGoogle Scholar
  8. 8.
    Filomeni, G., Rotilio, G., Ciriolo, M.R.: Cell signalling and the glutathione redox system. Biochem. Pharmacol. 64, 1057–1064 (2002)CrossRefGoogle Scholar
  9. 9.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J.: Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007)CrossRefGoogle Scholar
  10. 10.
    Pastore, A., Federici, G., Bertini, E., Piemonte, F.: Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta. 333, 19–39 (2003)CrossRefGoogle Scholar
  11. 11.
    Forman, H.J., Zhang, H., Rinna, A.: Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009)CrossRefGoogle Scholar
  12. 12.
    Paul, B.D., Sbodio, J.I., Xu, R., Vandiver, M.S., Cha, J.Y., Snowman, A.M., Snyder, S.H.: Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 509, 96–100 (2014)CrossRefGoogle Scholar
  13. 13.
    Monostori, P., Wittmann, G., Karg, E., Turi, S.: Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 3331–3346 (2009)CrossRefGoogle Scholar
  14. 14.
    Shaik, I.H., Mehvar, R.: Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal. Bioanal. Chem. 385, 105–113 (2006)CrossRefGoogle Scholar
  15. 15.
    Chen, J., Jiang, X., Zhang, C., MacKenzie, K.R., Stossi, F., Palzkill, T., Wang, M.C., Wang, J.: Reversible reaction-based fluorescent probe for real-time imaging of glutathione dynamics in mitochondria. ACS Sens. 2, 1257–1261 (2017)CrossRefGoogle Scholar
  16. 16.
    Jiang, X., Chen, J., Bajic, A., Zhang, C., Song, X., Carroll, S.L., Cai, Z.L., Tang, M., Xue, M., Cheng, N., Schaaf, C.P., Li, F., MacKenzie, K.R., Ferreon, A.C.M., Xia, F., Wang, M.C., Maletic-Savatic, M., Wang, J.: Quantitative real-time imaging of glutathione. Nat. Commun. 8, 16087 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, Z., Zhou, X., Miao, Y., Hu, Y., Kwon, N., Wu, X., Yoon, J.: A Reversible Fluorescent Probe for real-time quantitative monitoring of cellular glutathione. Angew. Chem. 56, 5812–5816 (2017)CrossRefGoogle Scholar
  18. 18.
    Jiang, X., Yu, Y., Chen, J., Zhao, M., Chen, H., Song, X., Matzuk, A.J., Carroll, S.L., Tan, X., Sizovs, A., Cheng, N., Wang, M.C., Wang, J.: Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol. 10, 864–874 (2015)CrossRefGoogle Scholar
  19. 19.
    Gao, X., Li, X., Li, L., Zhou, J., Ma, H.: A simple fluorescent off-on probe for the discrimination of cysteine from glutathione. Chem. Commun. 51, 9388–9390 (2015)CrossRefGoogle Scholar
  20. 20.
    Asakawa, D., Osaka, I.: Direct MALDI-MS analysis of the disulfide bonds in peptide using thiosalicylic acid as a reactive matrix. J. Mass Spectrom. 52, 127–131 (2017)CrossRefGoogle Scholar
  21. 21.
    Zeng, Z., Wang, Y., Shi, S., Wang, L., Guo, X., Lu, N.: On-plate selective enrichment and self-desalting of peptides/proteins for direct MALDI MS analysis. Anal. Chem. 84, 2118–2123 (2012)CrossRefGoogle Scholar
  22. 22.
    Wang, S., Xiao, Z., Xiao, C., Wang, H., Wang, B., Li, Y., Chen, X., Guo, X.: (E)-Propyl α-cyano-4-hydroxyl cinnamylate: a high sensitive and salt tolerant matrix for intact protein profiling by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 709–718 (2016)CrossRefGoogle Scholar
  23. 23.
    Zeng, Z., Wang, Y., Guo, X., Wang, L., Lu, N.: On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis. Analyst. 138, 3032–3037 (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, S., Xiao, C., Jiang, L., Ling, L., Chen, X., Guo, X.: A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chim. Acta. 999, 114–122 (2018)CrossRefGoogle Scholar
  25. 25.
    Ying, L.L., Michael, L.G.: Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1833–1837 (2004)CrossRefGoogle Scholar
  26. 26.
    Donhee, Y., Dongkun, L., Jong-Hyeon, L., Sangwon, C., Han, B.O.: Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix. Rapid Commun. Mass Spectrom. 29, 213–219 (2015)CrossRefGoogle Scholar
  27. 27.
    Chiang, C.K., Lin, Y.W., Chen, W.T., Chang, H.T.: Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomedicine. 6, 530–537 (2010)CrossRefGoogle Scholar
  28. 28.
    Hongseok, O., Jeongwook, L., Woon-Seok, Y.: Selective extraction and quantification of glutathione using maleimide-presenting gold nanoparticles. Bull. Kor. Chem. Soc. 10, 3047–3051 (2014)Google Scholar
  29. 29.
    Jing, W., Mingsha, J., Haifang, L., Luyao, L., Ziyi, H., Shiqi, W., Jin-Ming, L.: Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells. Talanta. 168, 222–229 (2017)CrossRefGoogle Scholar
  30. 30.
    Kamonwad, N., Christopher, B.M., Richard, G.C.: Rapid method for the quantification of reduced and oxidized glutathione in human plasma and saliva. Anal. Chem. 89, 2901–2908 (2017)CrossRefGoogle Scholar
  31. 31.
    Buter, L., Faber, H., Wigger, T., Vogel, M., Karst, U.: Differential protein labeling based on electrochemically generated reactive intermediates. Anal. Chem. 87, 9931–9938 (2015)CrossRefGoogle Scholar
  32. 32.
    Williams, D.K., Meadows, C.W., Bori, I.D., Hawkridge, A.M., Comins, D.L., Muddiman, D.C.: Synthesis, characterization, and application of iodoacetamide derivatives utilized for the ALiPHAT strategy. J. Am. Chem. Soc. 130, 2122–2123 (2008)CrossRefGoogle Scholar
  33. 33.
    Cabrera-Pardo, J.R., Chai, D.I., Liu, S., Mrksich, M., Kozmin, S.A.: Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization. Nat. Chem. 5, 423–427 (2013)CrossRefGoogle Scholar
  34. 34.
    Rohner, T.C., Rossier, J.S., Girault, H.H.: On-line electrochemical tagging of cysteines in proteins during nanospray. Electrochem. Commun. 4, 695–700 (2002)CrossRefGoogle Scholar
  35. 35.
    Ma, R., Hu, J., Cai, Z., Ju, H.: Dual quinone tagging for MALDI-TOF mass spectrometric quantitation of cysteine-containing peptide. Anal. Chem. 86, 8275–8280 (2014)CrossRefGoogle Scholar
  36. 36.
    Winther, J.R., Thorpe, C.: Quantification of thiols and disulfides. Biochim. Biophys. Acta. 1840, 838–846 (2014)CrossRefGoogle Scholar
  37. 37.
    Wang, D., Baudys, J., Barr, J.R., Kalb, S.R.: Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF mass spectrometry. Anal. Chem. 88, 6867–6872 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life ScienceJilin UniversityChangchunChina

Personalised recommendations