Advertisement

The Ion Source of Nitrogen Direct Analysis in Real-Time Mass Spectrometry as a Highly Efficient Reactor: Generation of Reactive Oxygen Species

  • Rui Su
  • Wenjing Yu
  • Kaiju Sun
  • Jie Yang
  • Changbao ChenEmail author
  • Wenhui Lian
  • Shuying Liu
  • Hongmei YangEmail author
Research Article

Abstract

An innovative strategy for sustainably active oxygen capture using nitrogen (N2) instead of helium (He) as direct analysis in real-time (DART) gas is demonstrated in this work. DART MS was carried out to analyze different polarity compounds including organophosphorus pesticides, amino acids, hormones, and poly brominated diphenyl ethers by using He and N2 as DART gas, respectively. The unexpectedly characteristic ionization reactions, including replacement reaction where the sulfur atom of P=S group, were replaced by oxygen atom, oxidation ([M + nO + H]+ or [M + nO-H] (n = 1, 2, 3, 4, 5)), and hydrogen loss (loss of two hydrogens) rapidly occurred in situ in the presence of N2 under ambient conditions without any additives. The reaction mechanisms were proposed and further confirmed by high-resolution tandem mass spectrometry. Our study under high temperature and high voltage provides a powerful tool for generating unique ionic species that may be difficult to form by other means, which also creates favorable conditions for the future study of the mechanism of DART MS.

Graphical Abstract

Keywords

Nitrogen direct analysis in real-time mass spectrometry Oxygen species Replacement Oxidation Hydrogen loss 

Notes

Acknowledgements

This work was supported by the Science and Technology Development Planning Project of Jilin Province (Nos. 201603080YY, 20170623026TC, 20160204027YY, 20160101220JC), Project of the Education Department of Jilin Province (No. JJKH20181274KJ), and Special Fund Project of Industrial Innovation in Jilin Province (No. 2017C056-2).

Supplementary material

13361_2019_2132_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4274 kb)

References

  1. 1.
    Monge, M.E., Fernández, F.M.: An introduction to ambient ionization mass spectrometry (Chapter 1). Ambient ionization mass spectrometry, pp. 1–22. RSC Publishing (2015)Google Scholar
  2. 2.
    Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.M.: Ambient mass spectrometry. Science. 311, 1566–1570 (2006)CrossRefGoogle Scholar
  3. 3.
    Manova, R.K., Claassen, F.W., Nielen, M.W.F., Zuilhof, H., van Beek, T.A.: Ambient mass spectrometry of covalently bound organic monolayers. Chem. Commun. 49, 922–924 (2013)CrossRefGoogle Scholar
  4. 4.
    Venter, A.R., Douglass, K.A., Shelley, J.T., Hasman Jr., G., Honarvar, E.: Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal. Chem. 86, 233–249 (2014)CrossRefGoogle Scholar
  5. 5.
    Clendinen, C.S., Monge, M.E., Fernández, F.M.: Ambient mass spectrometry in metabolomics. Analyst. 142, 3101–3117 (2017)CrossRefGoogle Scholar
  6. 6.
    Su, R., Wang, X., Hou, C., Yang, M., Huang, K., Chen, H.: Fast determination of ingredients in solid pharmaceuticals by microwave-enhanced in-source decay of microwave plasma torch mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1947–1957 (2017)CrossRefGoogle Scholar
  7. 7.
    Bridoux, M.C., Schwarzenberg, A., Schramm, S., Cole, R.B.: Combined use of direct analysis in real-time/Orbitrap mass spectrometry and micro-Raman spectroscopy for the comprehensive characterization of real explosive samples. Anal. Bioanal. Chem. 408, 5677–5687 (2016)CrossRefGoogle Scholar
  8. 8.
    Lia, H., Hitchinsa, V.M., Wickramasekara, S.: Rapid detection of bacterial endotoxins in ophthalmicviscosurgical device materials by direct analysis in real timemass spectrometry. Anal. Chim. Acta. 943, 98–105 (2016)CrossRefGoogle Scholar
  9. 9.
    Sugie, K., Kurakami, D., Akutsu, M., Saito, K.: Rapid detection of tert-butoxycarbonyl-methamphetamine by direct analysis in real time time-of-flight mass spectrometry. Forensic Toxicol. 36, 261–269 (2018)CrossRefGoogle Scholar
  10. 10.
    Fowble, K.L., Shepard, J.R.E., Musah, R.A.: Identification and classification of cathinone unknowns by statistical analysis processing of direct analysis in real time-high resolution mass spectrometry-derived “neutral loss” spectra. Talanta. 179, 546–553 (2018)CrossRefGoogle Scholar
  11. 11.
    Giffen, J.E., Rosati, J.Y., Longo, C.M., Musah, R.A.: Species identification of necrophagous insect eggs based on amino acid profile differences revealed by direct analysis in real time-high resolution mass spectrometry. Anal. Chem. 89, 7719–7726 (2017)CrossRefGoogle Scholar
  12. 12.
    Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)CrossRefGoogle Scholar
  13. 13.
    Harris, G.A., Galhena, A.S., Fernandez, F.M.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011)CrossRefGoogle Scholar
  14. 14.
    Gross, J.H.: Direct analysis in real time—a critical review on DART-MS. Anal. Bioanal. Chem. 406, 63–80 (2014)CrossRefGoogle Scholar
  15. 15.
    Guo, T., Yong, W., Jin, Y., Zhang, L., Liu, J., Wang, S., Chen, Q., Dong, Y., Su, H., Tan, T.: Applications of DART-MS for food quality and safety assurance in food supply chain. Mass Spectrom. Rev. 36, 161–187 (2017)CrossRefGoogle Scholar
  16. 16.
    Shi, X., Su, R., Yang, H., Lian, W., Wan, X., Liu, S.: Detection of pharmaceuticals by nitrogen direct analysis in real time mass spectrometry. Chem. J. Chin. Univ.-Chin. 38, 362–368 (2017)Google Scholar
  17. 17.
    Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernández, F.M.: Comparison of the internal energy deposition of direct analysis in real time and electrospray ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 855–863 (2010)CrossRefGoogle Scholar
  18. 18.
    Curtis, M., Minier, M.A., Chitranshi, P., Sparkman, O.D., Jones, P.R., Xue, L.: Direct analysis in real time (DART) mass spectrometry of nucleotides and nucleosides: elucidation of a novel fragment [C5H5O]+ and its in-source adducts. J. Am. Soc. Mass Spectrom. 21, 1371–1381 (2010)CrossRefGoogle Scholar
  19. 19.
    Cody, R.B.: Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal. Chem. 81, 1101–1107 (2009)CrossRefGoogle Scholar
  20. 20.
    Song, L., Dykstra, A.B., Yao, H., Bartmess, J.E.: Ionization mechanism of negative ion-direct analysis in real time: a comparative study with negative ion-atmospheric pressure photoionization. J. Am. Soc. Mass Spectrom. 20, 42–50 (2009)CrossRefGoogle Scholar
  21. 21.
    Yang, H., Wan, D., Song, F., Liu, Z., Liu, S.: Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds. Anal. Chem. 85, 1305–1309 (2013)CrossRefGoogle Scholar
  22. 22.
    Cody, R.B., Dane, A.J.: Dopant-assisted direct analysis in real time mass spectrometry with argon gas. Rapid Commun. Mass Spectrom. 30, 1181–1189 (2016)CrossRefGoogle Scholar
  23. 23.
    Dane, A.J., Cody, R.B.: Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry. Analyst. 135, 696–699 (2010)CrossRefGoogle Scholar
  24. 24.
    Hajslova, J., Cajka, T., Vaclavik, L.: Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Anal. Chem. 30, 204–218 (2011)CrossRefGoogle Scholar
  25. 25.
    Song, L., Gibson, S.C., Bhandari, D., Cook, K.D., Bartmess, J.E.: Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal. Chem. 81, 10080–10088 (2009)CrossRefGoogle Scholar
  26. 26.
    Sekimoto, K., Sakakura, M., Kawamukai, T., Hike, H., Shiota, T., Usui, F., Bando, Y., Takayama, M.: Ionization characteristics of amino acids in direct analysis in real time mass spectrometry. Analyst. 139, 2589–2599 (2014)CrossRefGoogle Scholar
  27. 27.
    Chernetsova, E.S., Morlock, G.E., Revelsky, I.A.: DART mass spectrometry and its applications in chemical analysis. Russ. Chem. Rev. 80, 235–255 (2011)CrossRefGoogle Scholar
  28. 28.
    Gilmore, F.R.: Potential energy curves for N2, NO, O2 and corresponding ions. J. Quant. Spectrosc. Radiat. Transf. 5, 369–390 (1965)CrossRefGoogle Scholar
  29. 29.
    Harris, G.A., Kwasnik, M., Fernandez, F.M.: Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals. Anal. Chem. 83, 1908–1915 (2011)CrossRefGoogle Scholar
  30. 30.
    Song, L., Chuah, W.C., Lu, X., Remsen, E., Bartmess, J.E.: Ionization mechanism of positive-ion nitrogen direct analysis in real time. J. Am. Soc. Mass Spectrom. 29, 640–650 (2018)CrossRefGoogle Scholar
  31. 31.
    Wang, Z., Li, Y., He, S., Bierbaum, V.M.: Reactivity of amino acid anions with nitrogen and oxygen atoms. Phys. Chem. Chem. Phys. 20, 4990–4996 (2018)CrossRefGoogle Scholar
  32. 32.
    Stemmler, E.A., Buchanan, M.V.: Negative ions generated by reactions with oxygen in the chemical ionization source. Org. Mass Spectrom. 24, 94–104 (1989)CrossRefGoogle Scholar
  33. 33.
    Stemmler, E.A., Buchanan, M.V.: Differentiation of methyl substituted fluorenes, anthracenes and benz[a] anthracenes using surface-catalyzed oxidation reactions and negative ion chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2, 184–188 (1988)CrossRefGoogle Scholar
  34. 34.
    Monig, J., Chapman, R., Asmus, K.D.: Effect of the protonation state of the amino group on the radical induced decarboxylation of amino acids in aqueous solution. J. Phys. Chem. 89, 3139–3144 (1985)CrossRefGoogle Scholar
  35. 35.
    Le Lacheur, R.M., Glaze, W.H.: Reactions of ozone and hydroxyl radicals with serine. Environ. Sci. Technol. 30, 1072–1080 (1996)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Rui Su
    • 1
  • Wenjing Yu
    • 1
  • Kaiju Sun
    • 1
  • Jie Yang
    • 2
  • Changbao Chen
    • 1
    Email author
  • Wenhui Lian
    • 1
  • Shuying Liu
    • 1
  • Hongmei Yang
    • 1
    • 3
    Email author
  1. 1.Changchun University of Chinese MedicineChangchunChina
  2. 2.Pharmaron Beijing Co., Ltd.BeijingChina
  3. 3.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations