Advertisement

Laser Ablation Generation of Antimony Selenide Clusters: Laser Desorption Ionization (LDI) Quadrupole Ion Trap Time of Flight Mass Spectrometry

  • Fei Huang
  • Lubomír Prokeš
  • Josef HavelEmail author
Research Article

Abstract

The binary system Sb-Se was studied via laser ablation using antimony-selenium mixtures made from powdered elements in various ratios generating new SbmSen clusters. The results show that in addition to Sbm+ (m = 1–8) and Sen+ (n = 2–9) clusters, a series of SbmSen+ clusters such as SbSe1–8+, Sb2Se1–6+, Sb3Se1–5+, Sb4Se1–3+, and Sb5Se1,2+ is generated. In addition, some low intensity oxidized clusters like Se6O2+, Se7O2+, and SbSe2-6O5+ and partially hydroxylated clusters (SbSeO2H7+, SbSe5O4H+) are also formed. In total, 24 new antimony selenide clusters were generated. The knowledge gained can contribute to the elucidation of the structure of SbmSen glasses.

Graphical Abstract

Keywords

Antimony selenides Laser ablation Clusters Laser desorption ionization Quadrupole ion trap mass spectrometry Chalcogenide glasses 

Notes

Acknowledgements

This work was funded with support from the Grant Agency of the Czech Republic (Projects No. GA18-03823S). This research has been also supported by CEPLANT, the project R&D center for low-cost plasma and nanotechnology surface modification, and CZ.1.05/2.1.00/03.0086 funding by the European Regional Development Fund and the Project CZ.1.07/2.3.00/30.0058 of the Ministry of Education, Youth and Sports of the Czech Republic.

Supplementary material

13361_2018_2119_MOESM1_ESM.png (126 kb)
Figure S1 A. Comparison of experimental and theoretical isotopic pattern for SbSe2+. Conditions: positive ion mode, laser energy 130 a.u. (PNG 125 kb)
13361_2018_2119_MOESM2_ESM.png (203 kb)
Figure S1 B. Comparison of experimental and theoretical isotopic patterns for SbSe2O5+ and SbSe3+ clusters. Conditions: positive ion mode, laser energy 130 a.u. (PNG 202 kb)
13361_2018_2119_MOESM3_ESM.png (297 kb)
Figure S1 C. Comparison of experimental and theoretical isotopic patterns for Se8+, Sb2Se5+, and Sb4Se2+. Conditions: positive ion mode, laser energy 180 a.u. (PNG 296 kb)
13361_2018_2119_MOESM4_ESM.png (158 kb)
Figure S2. Mass spectra recorded from LDI of Sb:Se mixture with the ratio of elements equal to 1:1 in the m/z range 200-600. The effect of laser energy. Conditions: negative ion mode, laser energy 90-110 a.u.; * means the isotopic pattern is too complex or spectra of low intensity to identify clusters. (PNG 157 kb)
13361_2018_2119_MOESM5_ESM.png (227 kb)
Figure S3. Comparison of experimental and theoretical isotopic pattern for SbSeO2H7+. Conditions: positive ion mode, laser energy 130 a.u. (PNG 226 kb)
13361_2018_2119_MOESM6_ESM.png (122 kb)
Figure S4. Overview of stoichiometry of SbmSen clusters generated from Sb:Se = 1:1 and Sb:Se = 1:10. (PNG 121 kb)
13361_2018_2119_MOESM7_ESM.png (124 kb)
Figure S5. Mass spectra recorded from LDI of Sb:Se mixture with the ratio of elements equal to 1:1 in m/z range 250-500 (synthesis in the “hole”). The effect of laser energy. Conditions: laser acts on one point, positive ion mode, laser energy 140-180 a.u. (PNG 124 kb)
13361_2018_2119_MOESM8_ESM.png (130 kb)
Figure S6. Mass spectra recorded from LDI of Sb:Se mixture (1:1) in the glycerol. Conditions: positive ion mode, laser energy 130 a.u. (PNG 130 kb)
13361_2018_2119_MOESM9_ESM.png (116 kb)
Figure S7. Mass spectra recorded from LDI of Sb:Se mixture (1:1) in the ionic liquid. Conditions: positive ion mode, laser energy 130 a.u. (PNG 115 kb)

References

  1. 1.
    Tideswell, N.W., Kruse, F.H., McCullough, J.D.: The crystal structure of antimony selenide, Sb2Se3. Acta Cryst. 10, 99–102 (1957)CrossRefGoogle Scholar
  2. 2.
    Voutsas, G.P., Papazoglou, A.G., Rentzeperis, P.J., Siapkas, D.: The crystal structure of antimony selenide, Sb2Se3. Z. Kristallogr. Cryst. Mater. 171, 261–268 (1985)CrossRefGoogle Scholar
  3. 3.
    Vadapoo, R., Krishnan, S., Yilmaz, H., Marin, C.: Electronic structure of antimony selenide (Sb2Se3) from GW calculations. Phys. Status Solidi B. 3, 700–705 (2011)CrossRefGoogle Scholar
  4. 4.
    Deringer, V.L., Stoffel, R.P., Wuttig, M., Dronskowski, R.: Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials. Chem. Sci. 6, 5255–5262 (2015)CrossRefGoogle Scholar
  5. 5.
    Ahmed, E., Isaeva, A., Fiedler, A., Haft, M., Ruck, M.: [Sb10Se10]2+, a heteronuclear polycyclic polycation from a room-temperature ionic liquid. Chem. Eur. J. 17, 6847–6852 (2011)CrossRefGoogle Scholar
  6. 6.
    Ahmed, E., Breternitz, J., Groh, M.F., Isaeva, A., Ruck, M.: [Sb7Se8Br2]3+ and [Sb13Se16Br2]5+- double and quadruple spiro cubanes from ionic liquids. Eur. J. Inorg. Chem. 19, 3037–3042 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Lee, K., Kovnir, K.: Synthesis, crystal structure, and thermoelectric properties of two new barium antimony selenides: Ba2Sb2Se5 and Ba6Sb7Se16. J. Mater. Chem. C. 3, 9811–9818 (2015)CrossRefGoogle Scholar
  8. 8.
    Martin, T.M., Wood, P.T., Kolis, J.W.: Synthesis and structure of an [Sb12Se20]4− salt: the largest molecular zintl ion. Inorg. Chem. 33, 1587–1588 (1994)CrossRefGoogle Scholar
  9. 9.
    Ko, J.B., Myung, T.-S.: Structural and thermal properties of Ge-Sb-Se chalcogenide glasses for an application in infrared optical product design and manufacture. J. Ceram. Process. Res. 12, 132–134 (2011)Google Scholar
  10. 10.
    Choi, J.H., Cha, D.-H., Kim, J.-H., Kim, H.-J.: Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses. J. Mater. Res. 31, 1674–1680 (2016)CrossRefGoogle Scholar
  11. 11.
    Parnell, H., Butterworth, J.H., Sakr, H., Tang, Z., Furniss, D., Benson, T.M., Scotchford, C., Seddon, A.B.: Ge-Sb-Se glass fiber-optics for in-vivo mid-infrared optical biopsy. Proc. SPIE. 9703, 970309 (2016)CrossRefGoogle Scholar
  12. 12.
    Prokeš, L., Kubáček, P., Peña-Méndez, E.M., Amato, F., Conde, J.E., Alberti, M., Havel, J.: Laser ablation synthesis of gold selenides by using a mass spectrometer as a synthesizer: laser desorption ionization time-of-flight mass spectrometry. Chem. Eur. J. 22, 11261–11268 (2016)CrossRefGoogle Scholar
  13. 13.
    Hohl, D., Jones, R.O., Car, R., Parrinello, M.: The structure of selenium clusters - Se3 to Se8. Chem. Phys. Lett. 139, 540–545 (1987)CrossRefGoogle Scholar
  14. 14.
    Xu, W., Bai, W.: The selenium clusters Sen (n = 1–5) and their anions: structures and electron affinities. J. Mol. Struc.-THEOCHEM. 854, 89–105 (2008)CrossRefGoogle Scholar
  15. 15.
    Alparone, A.: Density functional theory Raman spectra of cyclic selenium clusters Sen (n = 5–12). Comput. Theor. Chem. 988, 81–85 (2012)CrossRefGoogle Scholar
  16. 16.
    Geusic, M.E., Freeman, R.R., Duncan, M.A.: Neutral and ionic clusters of antimony and bismuth: a comparison of magic numbers. J. Chem. Phys. 89, 223–229 (1988)CrossRefGoogle Scholar
  17. 17.
    Zhai, H.-J., Wang, L.-S., Kuznetsov, A.E., Boldyrev, A.I.: Probing the electronic structure and aromaticity of pentapnictogen cluster anions Pn 5− (Pn = P, As, Sb, and Bi) using photoelectron spectroscopy and ab initio calculations. J. Phys. Chem. A. 106, 5600–5606 (2002)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.CEPLANT, R&D Centre for Low-Cost Plasma and Nanotechnology Surface ModificationMasaryk UniversityBrnoCzech Republic

Personalised recommendations