Sweep Jet Collection Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization for Lipid Analysis Applications

  • Kevin Benham
  • Facundo M. Fernández
  • Thomas M. OrlandoEmail author
Research Article


Laser-induced acoustic desorption coupled to microplasma-based atmospheric pressure photoionization (LIAD-APPI) using a nebulized sweep jet to aid in dopant introduction and ion transmission has been applied to the analysis of model, apolar lipid compounds. Specifically, several sterols, sterol esters, and triacylglycerols were detected using dopants such as anisole and toluene. Additionally, several triacylglycerols, sterols, carboxylic acids, and hopanoids were detected from complex mixtures of olive oil and Australian shale rock extract as a first demonstration of the applicability of LIAD-APPI on real-world samples. Detection limits using a sweep jet configuration for α-tocopherol and cholesterol were found to be 609 ± 61 and 292 ± 29 fmol, respectively. For sterol esters and triacylglycerols with a large number of double bonds in the fatty acid chain, LIAD-APPI was shown to yield greater molecular ion or [M+NH4]+ abundances than those with saturated fatty acid chains. Dopants such as anisole and toluene, with ionization potentials (IPs) of 8.2 and 8.8 eV, respectively, were tested. A greater degree of fragmentation with several of the more labile test compounds was observed using toluene. Overall, LIAD-APPI with a nebulized sweep jet requires minimal sample preparation and is a generally useful and sensitive analysis technique for low-polarity mixtures of relevance to biochemical assays and geochemical profiling.

Graphical Abstract


Laser-induced acoustic desorption Atmospheric pressure photoionization Microplasma Microhollow cathode discharge Olive oil Shale rock Lipids 



The authors thank David Deamer and Andrew Knoll for providing a black shale sample from the Australian Corcoran Formation. This work was supported by the NSF and NASA Astrobiology Program under the NSF Center for Chemical Evolution grant number CHE-1504217. The Bruker Q-TOF mass spectrometer was acquired through NSF grant CHE-0923179.

Supplementary material

13361_2018_2118_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1773 kb)


  1. 1.
    Stevens, K.G., Bader, C.A., Sorvina, A., Brooks, D.A., Plush, S.E., Morrison, J.L.: Imaging and lipidomics methods for lipid analysis in metabolic and cardiovascular disease. J. Dev. Orig. Health. Dis. 8, 566–574 (2017)CrossRefGoogle Scholar
  2. 2.
    Colsch, B., Seyer, A., Boudah, S., Junot, C.: Lipidomic analysis of cerebrospinal fluid by mass spectrometry-based methods. J. Inherit. Metab. Dis. 38, 53–64 (2015)CrossRefGoogle Scholar
  3. 3.
    Han, X., Gross, R.W.: Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 295, 88–100 (2001)CrossRefGoogle Scholar
  4. 4.
    Murphy, R.C., Axelsen, P.H.: Mass spectrometric analysis of long-chain lipids. Mass Spectrom. Rev. 30, 579–599 (2011)CrossRefGoogle Scholar
  5. 5.
    Caboni, M.F., Iafelice, G., Pelillo, M., Marconi, E.: Analysis of fatty acid steryl esters in tetraploid and hexaploid wheats: identification and comparison between chromatographic methods. J. Agric. Food Chem. 53, 7465–7472 (2005)CrossRefGoogle Scholar
  6. 6.
    Gusev, A.J.W., William, R., Proctor, A., Hercules, D.M.: Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal. Chem. 67, 1034–1041 (1995)CrossRefGoogle Scholar
  7. 7.
    Karas, M.B., Bachmann, D., Hillenkamp, F.: Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57, 2935–2939 (1985)CrossRefGoogle Scholar
  8. 8.
    Kauppila, T.J., Kostiainen, R.: Ambient mass spectrometry in the analysis of compounds of low polarity. Anal. Methods. 9, 4936–4953 (2017)CrossRefGoogle Scholar
  9. 9.
    Robb, D.B., Covey, T.R., Bruins, A.P.: Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 72, 3653–3659 (2000)CrossRefGoogle Scholar
  10. 10.
    Haapala, M., Pól, J., Saarela, V., Arvola, V., Kotiaho, T., Ketola, R.A., Franssila, S., Kauppila, T.J., Kostiainen, R.: Desorption atmospheric pressure photoionization. Anal. Chem. 79, 7867–7872 (2007)CrossRefGoogle Scholar
  11. 11.
    Suni, N.M., Aalto, H., Kauppila, T.J., Kotiaho, T., Kostiainen, R.: Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J. Mass Spectrom. 47, 611–619 (2012)CrossRefGoogle Scholar
  12. 12.
    Johnson, P.V., Hodyss, R., Beauchamp, J.L.: Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules. J. Am. Soc. Mass. Spectrom. 25, 1832–1840 (2014)CrossRefGoogle Scholar
  13. 13.
    Vaikkinen, A., Shrestha, B., Kauppila, T.J., Vertes, A., Kostiainen, R.: Infrared laser ablation atmospheric pressure photoionization mass spectrometry. Anal. Chem. 84, 1630–1636 (2012)CrossRefGoogle Scholar
  14. 14.
    Wu, C., Dill, A.L., Eberlin, L.S., Cooks, R.G., Ifa, D.R.: Mass spectrometry imaging under ambient conditions. Mass. Spectrom. Rev. 32, 218–243 (2013)CrossRefGoogle Scholar
  15. 15.
    Black, C., Chevallier, O.P., Elliott, C.T.: The current and potential applications of ambient mass spectrometry in detecting food fraud. Trac. Trends. Anal. Chem. 82, 268–278 (2016)CrossRefGoogle Scholar
  16. 16.
    Simoneit, B.R.T., Rushdi, A.I., Deamer, D.W.: Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products. Adv. Space Res. 40, 1649–1656 (2007)CrossRefGoogle Scholar
  17. 17.
    Hussler, G., Connan, J., Albrecht, P.: Novel families of tetra- and hexacyclic aromatic hopanoids predominant in carbonate rocks and crude oils. Org. Geochem. 6, 39–49 (1984)CrossRefGoogle Scholar
  18. 18.
    Nytoft, H.P.: Novel side chain methylated and hexacyclic hopanes: identification by synthesis, distribution in a worldwide set of coals and crude oils and use as markers for oxic depositional environments. Org. Geochem. 42, 520–539 (2011)CrossRefGoogle Scholar
  19. 19.
    Nytoft, H.P., Vuković, N.S., Kildahl-Andersen, G., Rise, F., Životić, D.R., Stojanović, K.A.: Identification of a novel series of benzohopanes and their geochemical significance. Energy Fuel. 30, 5563–5575 (2016)CrossRefGoogle Scholar
  20. 20.
    Georgiou, C.D., Deamer, D.W.: Lipids as universal biomarkers of extraterrestrial life. Astrobiology. 14, 541–549 (2014)CrossRefGoogle Scholar
  21. 21.
    Apel, C.L.D., David, W.: Dehydration/condensation reaction: increasing the chemical complexity of amphiphiles on the early earth. Origins of Life and Evolution of Biospheres. 35, 323–332 (2005)CrossRefGoogle Scholar
  22. 22.
    Benham, K., Hodyss, R., Fernandez, F.M., Orlando, T.M.: Laser-induced acoustic desorption atmospheric pressure photoionization via VUV-generating microplasmas. J. Am. Soc. Mass Spectrom. 27, 1805–1812 (2016)CrossRefGoogle Scholar
  23. 23.
    Golovlev, V.V., Allman, S.L., Garrett, W.R., Chen, C.H.: Laser-induced acoustic desorption of electrons and ions. Appl. Phys. Lett. 71, 852 (1997)CrossRefGoogle Scholar
  24. 24.
    Sezer, U., Wörner, L., Horak, J., Felix, L., Tüxen, J., Götz, C., Alipasha, V., Marcel, M., Markus, A.: Laser-induced acoustic desorption of natural and functionalized biochromophores. Anal. Chem. 87, 5614–5619 (2015)CrossRefGoogle Scholar
  25. 25.
    Jia, L., Weng, J., Zhou, Z., Qi, F., Guo, W., Zhao, L., Chen, J.: Note: laser-induced acoustic desorption/synchrotron vacuum ultraviolet photoionization mass spectrometry for analysis of fragile compounds and heavy oils. Rev. Sci. Instrum. 83, 026105 (2012)CrossRefGoogle Scholar
  26. 26.
    Cheng, S., Cheng, T.-L., Chang, H.-C., Shiea, J.: Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions. Anal. Chem. 81, 868–874 (2009)CrossRefGoogle Scholar
  27. 27.
    Pérez, J., Ramírez-Arizmendi, L.E., Petzold, C.J., Guler, L.P., Nelson, E.D., Kenttämaa, H.I.: Laser-induced acoustic desorption/chemical ionization in Fourier-transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 198, 173–188 (2000)CrossRefGoogle Scholar
  28. 28.
    Zinovev, A.V., Veryovkin, I.V., Moore, J.F., Pellin, M.J.: Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal. Chem. 79, 8232–8241 (2007)CrossRefGoogle Scholar
  29. 29.
    Zinovev, A.V., Veryovkin, I.V., Pellin, M.J.: Molecular desorption by laser-driven acoustic waves: analytical applications and physical mechanisms. In: Beghi MG (ed.). InTech, (2011)Google Scholar
  30. 30.
    Symonds, J.M., Gann, R.N., Fernandez, F.M., Orlando, T.M.: Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1557–1564 (2014)CrossRefGoogle Scholar
  31. 31.
    Stoeckli, M., Staab, D.: Reproducible matrix deposition for MALDI MSI based on open-source software and hardware. J. Am. Soc. Mass Spectrom. 26, 911–914 (2015)CrossRefGoogle Scholar
  32. 32.
    Kurunczi, P.F., Shah, H., Becker, K.H.: Hydrogen Lyman-alpha and Lyman-beta emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures. J. Phys. B Atomic Mol. Phys. 32, L651–L658 (1999)CrossRefGoogle Scholar
  33. 33.
    Moselhy, M., Petzenhauser, I., Frank, K., Schoenbach, K.H.: Excimer emission from microhollow cathode discharges. J. Phys. D. Appl. Phys. 36, 2922–2927 (2003)CrossRefGoogle Scholar
  34. 34.
    Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer. 1, 131–138 (1974)CrossRefGoogle Scholar
  35. 35.
    Harris, G.A.F., Facundo, M.: Simulations and experimental investigation of atmospheric transport in an ambient metastable-induced chemical ionization source. Anal. Chem. 81, 322–329 (2009)CrossRefGoogle Scholar
  36. 36.
    Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernandez, F.M.: Comparison of the internal energy deposition of direct analysis in real time and electrospray ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 855–863 (2010)CrossRefGoogle Scholar
  37. 37.
    Galhena, A., Harris, G.A., Nyadong, L., Murray, K.K., Facundo, M.F.: Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization. Anal. Chem. 82, 2178–2181 (2010)CrossRefGoogle Scholar
  38. 38.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRefGoogle Scholar
  39. 39.
    Wilcox, D.C.: Formulation of the k-w turbulence model revisited. AIAA J. 46, 2823–2838 (2008)CrossRefGoogle Scholar
  40. 40.
    Plat, J., Mensink, R.P.: Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. Am. J. Cardiol. 96, 15D–22D (2005)CrossRefGoogle Scholar
  41. 41.
    Abidi, S.L.: Chromatographic analysis of plant sterols in foods and vegetable oils. Journal of Chromotography A. 935, 173–201 (2001)CrossRefGoogle Scholar
  42. 42.
    Rejsek, J., Vrkoslav, V., Vaikkinen, A., Haapala, M., Kauppila, T.J., Kostiainen, R., Cvačka, J.: Thin-layer chromatography/desorption atmospheric pressure photoionization Orbitrap mass spectrometry of lipids. Anal. Chem. 88, 12279–12286 (2016)CrossRefGoogle Scholar
  43. 43.
    Scholz, B., Menzel, N., Lander, V., Engel, K.H.: An approach based on ultrahigh performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry allowing the quantification of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures. J. Chromatogr. A. 1429, 218–229 (2016)CrossRefGoogle Scholar
  44. 44.
    Byrdwell, W.C.: Atmospheric Pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 36, 327–346 (2001)CrossRefGoogle Scholar
  45. 45.
    Trickl, T., Cromwell, E.F., Lee, Y.T., Kung, A.H.: State-selective ionization of nitrogen in the X 2Σ+ gv+=0 and v+=1 states by two-color (1+ 1) photon excitation near threshold. J. Chem. Phys. 91, 6006–6012 (1989)CrossRefGoogle Scholar
  46. 46.
    Marcus, R.A.: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys. 20, 359–364 (1952)CrossRefGoogle Scholar
  47. 47.
    Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)CrossRefGoogle Scholar
  48. 48.
    Sánchez, J.H., John, L.: Biosynthesis of triacylglycerols and volatiles in olives. Eur. J. Lipid Sci. Technol. 104, 564–573 (2002)CrossRefGoogle Scholar
  49. 49.
    Kuhajda, F.P.: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 16, 202–208 (2000)CrossRefGoogle Scholar
  50. 50.
    Servili, M., Sordini, B., Esposto, S., Urbani, S., Veneziani, G., Di Maio, I., Selvaggini, R., Taticchi, A.: Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants (Basel). 3, 1–23 (2013)CrossRefGoogle Scholar
  51. 51.
    Alberici, R.M., Fernandes, G.D., Porcari, A.M., Eberlin, M.N., Barrera-Arellano, D., Fernandez, F.M.: Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched-margarines by transmission mode direct analysis in real time mass spectrometry. Food Chem. 211, 661–668 (2016)CrossRefGoogle Scholar
  52. 52.
    Fahy, E., Sud, M., Cotter, D., Subramaniam, S.: LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007)CrossRefGoogle Scholar
  53. 53.
    Li, C., Zhang, Y., Li, S., Wang, G., Xu, C., Deng, Y., Wang, S.: Mechanism of formation of trans fatty acids under heating conditions in triolein. J. Agric. Food Chem. 61, 10392–10397 (2013)CrossRefGoogle Scholar
  54. 54.
    Beltrán, G., Del Rio, C., Sánchez, S., Martínez, L.: Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from Cv. Picual. J. Agric. Food Chem. 52, 3434–3440 (2004)CrossRefGoogle Scholar
  55. 55.
    Rybicki, M., Marynowski, L., Simoneit, B.R.T., Series, B.: Their novel di-, tri-, and tetraaromatic derivatives, and diaromatic 23- and 24-norbenzohopanes from the Lower Jurassic Blanowice Formation, Southern Poland. Energy Fuel. 31, 2617–2624 (2017)CrossRefGoogle Scholar
  56. 56.
    Liao, J., Lu, H., Sheng, G., Peng, P.A., Hsu, C.S.: Monoaromatic, diaromatic, triaromatic, and tetraaromatic hopanes in kukersite shale and their stable carbon isotopic composition. Energy Fuel. 29, 3573–3583 (2015)CrossRefGoogle Scholar
  57. 57.
    Deamer, D.W.: Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature. 317, 792–794 (1985)CrossRefGoogle Scholar
  58. 58.
    Laiko, V.V., Moyer, S.C., Cotter, R.J.: Atmospheric Pressure MALDI/Ion trap mass spectrometry. Anal. Chem. 72, 5239–5243 (2000)CrossRefGoogle Scholar
  59. 59.
    Smith, D.R., Robb, D.B., Blades, M.W.: Comparison of dopants for charge exchange ionization of nonpolar polycyclic aromatic hydrocarbons with reversed-phase LC-APPI-MS. J. Am. Soc. Mass Spectrom. 20, 73–79 (2009)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Kevin Benham
    • 1
  • Facundo M. Fernández
    • 1
  • Thomas M. Orlando
    • 1
    Email author
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations