Advertisement

A New Quantification Method Using Electrochemical Mass Spectrometry

  • Chang Xu
  • Qiuling Zheng
  • Pengyi Zhao
  • Joseph Paterson
  • Hao Chen
Research Article

Abstract

Mass spectrometry-based quantification method has advanced rapidly. In general, the methods for accurate quantification rely on the use of authentic target compounds or isotope-labeled compounds as standards, which might be not available or difficult to synthesize. To tackle this grand challenge, this paper presents a novel approach, based on electrochemistry (EC) combined with mass spectrometry (MS). In this approach, a target compound is allowed to undergo electrochemical oxidation and then subject to MS analysis. The oxidation current recorded from electrochemistry (EC) measurement provides information about the amount of the oxidized analyte, based on the Faraday’s Law. On the other hand, the oxidation reaction yield can be determined from the analyte MS signal changes upon electrolysis. Therefore, the total amount of analyte can be determined. In combination with liquid chromatography (LC), the method can be applicable to mixture analysis. The striking strength of such a method for quantitation is that neither standard compound nor calibration curve is required. Various analyte molecules such as dopamine, norepinephrine, and rutin as well as peptide glutathione in low quantity were successfully quantified using our method with the quantification error ranging from − 2.6 to + 4.6%. Analyte in a complicated matrix (e.g., uric acid in urine) was also accurately measured.

Graphical Abstract

Keywords

Quantification Mass spectrometry Electrochemistry Chromatography 

Notes

Supporting Information

Additional electrochemical and mass spectrometric measurement data are included.

Acknowledgements

This work was supported by NSF (CHE-1455554 and CHE-1709075).

Supplementary material

13361_2018_2116_MOESM1_ESM.docx (328 kb)
ESM 1 (DOCX 328 kb)

References

  1. 1.
    Cooks, R.G., Yan, X.: Mass spectrometry for synthesis and analysis. Annu. Rev. Anal. Chem. 11, 1–28 (2018)CrossRefGoogle Scholar
  2. 2.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  3. 3.
    Cui, W., Rohrs, H.W., Gross, M.L.: Top-down mass spectrometry: recent developments, applications and perspectives. Analyst. 136, 3854 (2011)CrossRefGoogle Scholar
  4. 4.
    Zhang, H., Cui, W., Gross, M.L., Blankenship, R.E.: Native mass spectrometry of photosynthetic pigment-protein complexes. FEBS Lett. 587, 1012–1020 (2013)CrossRefGoogle Scholar
  5. 5.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefGoogle Scholar
  6. 6.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature. 422, 198–207 (2003)CrossRefGoogle Scholar
  7. 7.
    Clough, T., Key, M., Ott, I., Ragg, S., Schadow, G., Vitek, O.: Protein quantification in label-free LC-MS experiments. J. Proteome Res. 8, 5275–5284 (2009)CrossRefGoogle Scholar
  8. 8.
    Sohn, C.H., Lee, J.E., Sweredoski, M.J., Graham, R.L.J., Smith, G.T., Hess, S., Czerwieniec, G., Loo, J.A., Deshaies, R.J., Beauchamp, J.L.: Click chemistry facilitates formation of reporter ions and simplified synthesis of amine-reactive multiplexed isobaric tags for protein quantification. J. Am. Chem. Soc. 134, 2672–2680 (2012)CrossRefGoogle Scholar
  9. 9.
    Hopfgartner, G., Tonoli, D., Varesio, E.: High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal. Bioanal. Chem. 402, 2587–2596 (2012)CrossRefGoogle Scholar
  10. 10.
    Verplaetse, R., Henion, J.: Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC-MS/MS. Drug Test. Anal. 8, 30–38 (2016)CrossRefGoogle Scholar
  11. 11.
    Heck, A.J., Krijgsveld, J.: Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics. 1, 317–326 (2004)CrossRefGoogle Scholar
  12. 12.
    Sechi, S., Oda, Y.: Quantitative proteomics using mass spectrometry. Curr. Opin. Chem. Biol. 7, 70–77 (2003)CrossRefGoogle Scholar
  13. 13.
    Righetti, P.G., Campostrini, N., Pascali, J., Hamdan, M., Astner, H.: Quantitative proteomics: a review of different methodologies. Eur. J. Mass Spectrom. 10, 335–348 (2004)CrossRefGoogle Scholar
  14. 14.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)CrossRefGoogle Scholar
  15. 15.
    Ong, S.-E., Foster, L.J., Mann, M.: Mass spectrometric-based approaches in quantitative proteomics. Methods. 29, 124–130 (2003)CrossRefGoogle Scholar
  16. 16.
    Tao, W.A., Aebersold, R.: Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr. Opin. Biotechnol. 14, 110–118 (2003)CrossRefGoogle Scholar
  17. 17.
    Ong, S.-E., Mann, M.: Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005)CrossRefGoogle Scholar
  18. 18.
    Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M.: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 1, 376–386 (2002)CrossRefGoogle Scholar
  19. 19.
    Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C.P., Plasterk, R.H.A., Heck, A.J.R.: Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21, 927–931 (2003)CrossRefGoogle Scholar
  20. 20.
    Wu, C.C., MacCoss, M.J., Howell, K.E., Dwight, E., Matthews, A., Yates, J.R.: Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004)CrossRefGoogle Scholar
  21. 21.
    Gruhler, A., Schulze, W.X., Matthiesen, R., Mann, M., Jensen, O.N.: Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell. Proteomics. 4, 1697–1709 (2005)CrossRefGoogle Scholar
  22. 22.
    Sturm, R.M., Lietz, C.B., Li, L.: Improved isobaric tandem mass tag quantification by ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 28, 1051–1060 (2014)CrossRefGoogle Scholar
  23. 23.
    Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003)CrossRefGoogle Scholar
  24. 24.
    Zhang, H., Li, X., Martin, D.B., Aebersold, R.: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003)CrossRefGoogle Scholar
  25. 25.
    Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 3, 1154–1169 (2004)CrossRefGoogle Scholar
  26. 26.
    Liu, H., Zhang, Y., Wang, J., Wang, D., Zhou, C., Cai, Y., Qian, X.: Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Anal. Chem. 78, 6614–6621 (2006)CrossRefGoogle Scholar
  27. 27.
    Schmidt, A., Kellermann, J., Lottspeich, F.: A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics. 5, 4–15 (2005)CrossRefGoogle Scholar
  28. 28.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B.: Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007)CrossRefGoogle Scholar
  29. 29.
    Bantscheff, M., Lemeer, S., Savitski, M.M., Kuster, B.: Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012)CrossRefGoogle Scholar
  30. 30.
    Boyd, B., Basic, C., Bethem, R.: Trace Quantitative Analysis by Mass Spectrometry. Wiley (2008)Google Scholar
  31. 31.
    Korfmacher, W.A.: Mass Spectrometry for Drug Discovery and Drug Development. Wiley (2013)Google Scholar
  32. 32.
    Hammerich, O., Speiser, B.: Organic Electrochemistry. CRC Press (2015)Google Scholar
  33. 33.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods : Fundamentals and Applications. Wiley (2001)Google Scholar
  34. 34.
    Flanagan, R.J., Perrett, D., Whelpton, R.: Electrochemical Detection in HPLC: Analysis of Drugs and Poisons. Royal Society of Chemistry, Cambridge (2005)Google Scholar
  35. 35.
    Horvai, G., Pungor, E.: Electrochemical detectors in HPLC and ion chromatography. Crit. Rev. Anal. Chem. 21, 1–28 (1989)CrossRefGoogle Scholar
  36. 36.
    Pelivan, K., Frensemeier, L.M., Karst, U., Koellensperger, G., Heffeter, P., Keppler, B.K., Kowol, C.R.: Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones. Anal. Bioanal. Chem. 410, 2343–2361 (2018)CrossRefGoogle Scholar
  37. 37.
    Gun, J., Bharathi, S., Gutkin, V., Rizkov, D., Voloshenko, A., Shelkov, R., Sladkevich, S., Kyi, N., Rona, M., Wolanov, Y., Rizkov, D., Koch, M., Mizrahi, S., Pridkhochenko, P.V., Modestov, A., Lev, O.: Highlights in coupled electrochemical flow cell-mass spectrometry, EC/MS. Isr. J. Chem. 50, 360–373 (2010)CrossRefGoogle Scholar
  38. 38.
    Diehl, G., Karst, U.: On-line electrochemistry – MS and related techniques. Anal. Bioanal. Chem. 373, 390–398 (2002)CrossRefGoogle Scholar
  39. 39.
    Permentier, H., Bruins, A., Bischoff, R.: Electrochemistry-mass spectrometry in drug metabolism and protein research. Mini-Reviews Med. Chem. 8, 46–56 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhou, F., Van Berkel, G.J.: Electrochemistry combined online with electrospray mass spectrometry. Anal. Chem. 67, 3643–3649 (1995)CrossRefGoogle Scholar
  41. 41.
    Zheng, Q., Zhang, H., Tong, L., Wu, S., Chen, H.: Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal. Chem. 86, 8983–8991 (2014)CrossRefGoogle Scholar
  42. 42.
    Cai, Y., Wang, J., Zhang, Y., Li, Z., Hu, D., Zheng, N., Chen, H.: Detection of fleeting amine radical cations and elucidation of chain processes in visible-light-mediated [3 + 2] annulation by online mass spectrometric techniques. J. Am. Chem. Soc. 139, 12259–12266 (2017)CrossRefGoogle Scholar
  43. 43.
    Li, J., Dewald, H.D., Chen, H.: Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal. Chem. 81, 9716–9722 (2009)CrossRefGoogle Scholar
  44. 44.
    Brown, T.A., Chen, H., Zare, R.N.: Detection of the short-lived radical cation intermediate in the electrooxidation of N , N -dimethylaniline by mass spectrometry. Angew. Chemie Int. Ed. 54, 11183–11185 (2015)CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Cui, W., Zhang, H., Dewald, H.D., Chen, H.: Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal. Chem. 84, 3838–3842 (2012)CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., Yuan, Z., Dewald, H.D., Chen, H.: Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem. Commun. 47, 4171 (2011)CrossRefGoogle Scholar
  47. 47.
    Pedro, A., Soares, R.F., Oppolzer, D., Santos, F., Rocha, L., Gonçalves, A., Bonifacio, M., Queiroz, J., Gallardo, E., Passarinha, L.: An improved HPLC method for quantification of metanephrine with coulometric detection. J Chromatogr. Separat Tech. 5, 217 (2014)Google Scholar
  48. 48.
    Schiavo, S., Ebbel, E., Sharma, S., Matson, W., Kristal, B.S., Hersch, S., Vouros, P.: Metabolite identification using a nanoelectrospray LC-EC-array-MS integrated system. Anal. Chem. 80, 5912–5923 (2008)CrossRefGoogle Scholar
  49. 49.
    Dewald, H.D., Worst, S.A., Butcher, J.A., Saulinskas, E.F.: Separation and identification of isoflavones with on-line liquid chromatography-electrochemistry-thermospray mass spectrometry. Electroanalysis. 3, 777–782 (1991)CrossRefGoogle Scholar
  50. 50.
    Miao, Z., Chen, H.: Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J. Am. Soc. Mass Spectrom. 20, 10–19 (2009)CrossRefGoogle Scholar
  51. 51.
    Zheng, Q., Chen, H.: Development and applications of liquid sample desorption electrospray ionization mass spectrometry. Annu. Rev. Anal. Chem. 9, 411–448 (2016)CrossRefGoogle Scholar
  52. 52.
    Mohandas, R., Johnson, R.J.: Uric acid levels increase risk for new-onset kidney disease. J. Am. Soc. Nephrol. 19, 2251–2253 (2008)CrossRefGoogle Scholar
  53. 53.
    Brown, T.A., Chen, H., Zare, R.N.: Identification of fleeting electrochemical reaction intermediates using desorption electrospray ionization mass spectrometry. J. Am. Chem. Soc. 137, 7274–7277 (2015)CrossRefGoogle Scholar
  54. 54.
    Dungchai, W., Chailapakul, O., Henry, C.S.: Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal. Chim. Acta. 674, 227–233 (2010)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Chang Xu
    • 1
  • Qiuling Zheng
    • 1
  • Pengyi Zhao
    • 1
    • 2
  • Joseph Paterson
    • 1
  • Hao Chen
    • 1
    • 2
  1. 1.Center for Intelligent Chemical Instrumentation, Department of Chemistry and BiochemistryOhio UniversityAthensUSA
  2. 2.Department of Chemistry & Environmental ScienceNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations