Advertisement

Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions

  • Jean R. N. Haler
  • Philippe Massonnet
  • Johann Far
  • Victor R. de la Rosa
  • Philippe Lecomte
  • Richard Hoogenboom
  • Christine Jérôme
  • Edwin De Pauw
Research Article

Abstract

Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility–mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses. Here, we perform collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K0). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmentation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K0 deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl-2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion–drift gas interaction potentials.

Graphical Abstract

Keywords

Collision induced unfolding, CIU Collision induced dissociation, CID Electron transfer dissociation, ETD Synthetic polymers Ion mobility calibration 

Notes

Acknowledgements

The authors thank the F.R.S.-FNRS for the financial support (F.R.I.A.). R.H. acknowledges financial support from FWO and Ghent University.

Supplementary material

13361_2018_2115_MOESM1_ESM.pdf (3.3 mb)
ESM 1 (PDF 3342 kb)

References

  1. 1.
    Floris, F., Vallotto, C., Chiron, L., Lynch, A.M., Barrow, M.P., Delsuc, M.A., O’Connor, P.B.: Polymer analysis in the second dimension: preliminary studies for the characterization of polymers with 2D MS. Anal. Chem. 89, 9892–9899 (2017)CrossRefPubMedGoogle Scholar
  2. 2.
    Wesdemiotis, C., Solak, N., Polce, M.J., Dabney, D.E., Chaicharoen, K., Katzenmeyer, B.C.: Fragmentation pathways of polymer ions. Mass Spectrom. Rev. 30, 523–529 (2011)CrossRefPubMedGoogle Scholar
  3. 3.
    Baumgaertel, A., Altuntaş, E., Kempe, K., Crecelius, A., Schubert, U.S.: Characterization of different poly(2-oxazoline) block copolymers by MALDI-TOF MS/MS and ESI-Q-TOF MS/MS. J. Polym. Sci. A Polym. Chem. 48, 5533–5540 (2010)CrossRefGoogle Scholar
  4. 4.
    Crotty, S., Gerişlioğlu, S., Endres, K.J., Wesdemiotis, C., Schubert, U.S.: Polymer architectures via mass spectrometry and hyphenated techniques: a review. Anal. Chim. Acta. 932, 1–21 (2016)CrossRefPubMedGoogle Scholar
  5. 5.
    Yol, A.M., Dabney, D.E., Wang, S.F., Laurent, B.A., Foster, M.D., Quirk, R.P., Grayson, S.M., Wesdemiotis, C.: Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2). J. Am. Soc. Mass Spectrom. 24, 74–82 (2013)CrossRefPubMedGoogle Scholar
  6. 6.
    Knop, K., Jahn, B.O., Hager, M.D., Crecelius, A., Gottschaldt, M., Schubert, U.S.: Systematic MALDI-TOF CID investigation on different substituted mPEG 2000. Macromol. Chem. Phys. 211, 677–684 (2010)CrossRefGoogle Scholar
  7. 7.
    Girod, M., Phan, T.N.T., Charles, L.: Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1163–1175 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Jeanne Dit Fouque, D., Maroto, A., Memboeuf, A.: Purification and quantification of an isomeric compound in a mixture by collisional excitation in multistage mass spectrometry experiments. Anal. Chem. 88, 10821–10825 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    Memboeuf, A., Nasioudis, A., Indelicato, S., Pollreisz, F., Kuki, Á., Kéki, S., Van Den Brink, O.F., Vékey, K., Drahos, L.: Size effect on fragmentation in tandem mass spectrometry. Anal. Chem. 82, 2294–2302 (2010)CrossRefPubMedGoogle Scholar
  10. 10.
    Josse, T., De Winter, J., Dubois, P., Coulembier, O., Gerbaux, P., Memboeuf, A.: A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polym. Chem. 6, 64–69 (2015)CrossRefGoogle Scholar
  11. 11.
    Memboeuf, A., Jullien, L., Lartia, R., Brasme, B., Gimbert, Y.: Tandem mass spectrometric analysis of a mixture of isobars using the survival yield technique. J. Am. Soc. Mass Spectrom. 22, 1744–1752 (2011)CrossRefPubMedGoogle Scholar
  12. 12.
    Nasioudis, A., Memboeuf, A., Heeren, R.M.A., Smith, D.F., Vékey, K., Drahos, L., Van Den Brink, O.F.: Discrimination of polymers by using their characteristic collision energy in tandem mass spectrometry. Anal. Chem. 82, 9350–9356 (2010)CrossRefPubMedGoogle Scholar
  13. 13.
    Katzenmeyer, B.C., Cool, L.R., Williams, J.P., Craven, K., Brown, J.M., Wesdemiotis, C.: Electron transfer dissociation of sodium cationized polyesters: reaction time effects and combination with collisional activation and ion mobility separation. Int. J. Mass Spectrom. 378, 303–311 (2015)CrossRefGoogle Scholar
  14. 14.
    Burel, A., Carapito, C., Lutz, J.-F., Charles, L.: MS-DECODER: milliseconds sequencing of coded polymers. Macromolecules. 50, 8290–8296 (2017)CrossRefGoogle Scholar
  15. 15.
    Charles, L., Laure, C., Lutz, J.-F., Roy, R.K.: MS/MS sequencing of digitally encoded poly(alkoxyamine amide)s. Macromolecules. 48, 4319–4328 (2015)CrossRefGoogle Scholar
  16. 16.
    Chendo, C., Phan, T.N.T., Rollet, M., Gigmes, D., Charles, L.: Adduction of ammonium to polylactides to modify their dissociation behavior in collision-induced dissociation. Rapid Commun. Mass Spectrom. 32, 423–430 (2018)CrossRefPubMedGoogle Scholar
  17. 17.
    Amalian, J.-A., Trinh, T.T., Lutz, J.-F., Charles, L.: MS/MS digital readout: analysis of binary information encoded in the monomer sequences of poly(triazole amide)s. Anal. Chem. 88, 3715–3722 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    Amalian, J.-A., Poyer, S., Petit, B.E., Telitel, S., Monnier, V., Karamessini, D., Gigmes, D., Lutz, J.-F., Charles, L.: Negative mode MS/MS to read digital information encoded in sequence-defined oligo(urethane)s: a mechanistic study. Int. J. Mass Spectrom. 421, 271–278 (2017)CrossRefGoogle Scholar
  19. 19.
    Kaczorowska, M.A., Cooper, H.J.: Electron capture dissociation, electron detachment dissociation, and collision-induced dissociation of polyamidoamine (PAMAM) dendrimer ions with amino, amidoethanol, and sodium carboxylate surface groups. J. Am. Soc. Mass Spectrom. 19, 1312–1319 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaczorowska, M.A., Cooper, H.J.: Characterization of polyphosphoesters by Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 2238–2247 (2009)CrossRefPubMedGoogle Scholar
  21. 21.
    Cerda, B., Horn, D., Breuker, K., Carpenter, B., McLafferty, F.: Electron capture dissociation of multiply-charged oxygenated cations. A nonergodic process. Eur. J. Mass Spectrom. 5, 335 (1999)CrossRefGoogle Scholar
  22. 22.
    Cerda, B.A., Breuker, K., Horn, D.M., McLafferty, F.W.: Charge/radical site initiation versus coulombic repulsion for cleavage of multiply charged ions. Charge solvation in poly(alkene glycol) ions. J. Am. Soc. Mass Spectrom. 12, 565–570 (2001)CrossRefPubMedGoogle Scholar
  23. 23.
    Cerda, B.A., Horn, D.M., Breuker, K., McLafferty, F.W.: Sequencing of specific copolymer oligomers by electron-capture-dissociation mass spectrometry. J. Am. Chem. Soc. 124, 9287–9291 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    Altuntaş, E., Knop, K., Tauhardt, L., Kempe, K., Crecelius, A.C., Jäger, M., Hager, M.D., Schubert, U.S.: Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). J. Mass Spectrom. 47, 105–114 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    Altuntas, E., Weber, C., Schubert, U.S.: Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study. Rapid Commun. Mass Spectrom. 27, 1095–1100 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Trimpin, S., Plasencia, M., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    Larriba, C., Fernandez De La Mora, J.: The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B. 116, 593–598 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    Haler, J.R.N., Massonnet, P., Chirot, F., Kune, C., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., Dugourd, P., De Pauw, E.: Comparison of different ion mobility setups using poly (ethylene oxide) PEO polymers: drift tube, TIMS, and T-wave. J. Am. Soc. Mass Spectrom. 29, 114–120 (2018)CrossRefPubMedGoogle Scholar
  30. 30.
    Haler, J.R.N., Far, J., Aqil, A., Claereboudt, J., Tomczyk, N., Giles, K., Jérôme, C., De Pauw, E.: Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility–mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2492–2499 (2017)CrossRefPubMedGoogle Scholar
  31. 31.
    Hoskins, J.N., Trimpin, S., Grayson, S.M.: Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry–mass spectrometry. Macromolecules. 44, 6915–6918 (2011)CrossRefGoogle Scholar
  32. 32.
    Morsa, D., Defize, T., Dehareng, D., Jérôme, C., De Pauw, E.: Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal. Chem. 86, 9693–9700 (2014)CrossRefPubMedGoogle Scholar
  33. 33.
    Duez, Q., Josse, T., Lemaur, V., Chirot, F., Choi, C.M., Dubois, P., Dugourd, P., Cornil, J., Gerbaux, P., De Winter, J.: Correlation between the shape of the ion mobility signals and the stepwise folding process of polylactide ions. J. Mass Spectrom. 52, 133–138 (2017)CrossRefPubMedGoogle Scholar
  34. 34.
    Haler, J.R.N., Morsa, D., Lecomte, P., Jérôme, C., Far, J., De Pauw, E.: Predicting ion mobility–mass spectrometry trends of polymers using the concept of apparent densities. Methods. 144, 125–133 (2018)CrossRefPubMedGoogle Scholar
  35. 35.
    Wesdemiotis, C.: Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew. Chem. Int. Ed. 56, 1452–1464 (2017)CrossRefGoogle Scholar
  36. 36.
    Larriba, C., De La Mora, J.F., Clemmer, D.E.: Electrospray ionization mechanisms for large polyethylene glycol chains studied through tandem ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1332–1345 (2014)CrossRefPubMedGoogle Scholar
  37. 37.
    de la Rosa, V.R., Tempelaar, S., Dubois, P., Hoogenboom, R., Mespouille, L.: Poly(2-ethyl-2-oxazoline)-block-polycarbonate block copolymers: from improved end-group control in poly(2-oxazoline)s to chain extension with aliphatic polycarbonate through a fully metal-free ring-opening polymerisation process. Polym. Chem. 7, 1559–1568 (2016)CrossRefGoogle Scholar
  38. 38.
    Haler, J.R.N., Kune, C., Massonnet, P., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., De Pauw, E.: Comprehensive ion mobility calibration: poly(ethylene oxide) polymer calibrants and general strategies. Anal. Chem. 89, 12076–12086 (2017)CrossRefGoogle Scholar
  39. 39.
    Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.-J., Robinson, C.V.: Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  40. 40.
    Counterman, A.E., Valentine, S.J., Srebalus, C.A., Henderson, S.C., Hoaglund, C.S., Clemmer, D.E.: High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J. Am. Soc. Mass Spectrom. 9, 743–759 (1998)CrossRefPubMedGoogle Scholar
  41. 41.
    Bush, M.F., Campuzano, I.D.G., Robinson, C.V.: Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal. Chem. 84, 7124–7130 (2012)CrossRefPubMedGoogle Scholar
  42. 42.
    Valentine, S.J., Counterman, A.E., Clemmer, D.E.: Conformer-dependent proton-transfer reactions of ubiquitin ions. J. Am. Soc. Mass Spectrom. 8, 954–961 (1997)CrossRefGoogle Scholar
  43. 43.
    Shelimov, K.B., Jarrold, M.F.: Vacuum : an activation barrier for gas-phase protein folding. J. Am. Chem. Soc. 119, 2987–2994 (1997)CrossRefGoogle Scholar
  44. 44.
    Chen, Y.L., Collings, B.A., Douglas, D.J.: Collision cross sections of myoglobin and cytochrome c ions with Ne, Ar, and Kr. J. Am. Soc. Mass Spectrom. 8, 681–687 (1997)CrossRefGoogle Scholar
  45. 45.
    Valentine, S.J., Anderson, J.G., Ellington, A.D., Clemmer, D.E.: Disulfide-intact and -reduced lysozyme in the gas phase: conformations and pathways of folding and unfolding. J. Phys. Chem. B. 101, 3891–3900 (1997)CrossRefGoogle Scholar
  46. 46.
    Flanagan, J.M.: Mass spectrometry calibration using homogeneously substituted fluorinated triazatriphosphorines. US 5872357 A (1999)Google Scholar
  47. 47.
    Zhong, Y., Han, L., Ruotolo, B.T.: Collisional and coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew. Chem. Int. Ed. 53, 9209–9212 (2014)CrossRefGoogle Scholar
  48. 48.
    Tian, Y., Han, L., Buckner, A.C., Ruotolo, B.T.: Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal. Chem. 87, 11509–11515 (2015)CrossRefPubMedGoogle Scholar
  49. 49.
    Duez, Q., Chirot, F., Liénard, R., Josse, T., Choi, C.M., Coulembier, O., Dugourd, P., Cornil, J., Gerbaux, P., De Winter, J.: Polymers for traveling wave ion mobility spectrometry calibration. J. Am. Soc. Mass Spectrom. 28, 2483–2491 (2017)CrossRefPubMedGoogle Scholar
  50. 50.
    Lermyte, F., Łącki, M.K., Valkenborg, D., Gambin, A., Sobott, F.: Conformational space and stability of ETD charge reduction products of ubiquitin. J. Am. Soc. Mass Spectrom. 28, 69–76 (2017)CrossRefPubMedGoogle Scholar
  51. 51.
    Morsa, D., Gabelica, V., De Pauw, E.: Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1384–1393 (2014)CrossRefPubMedGoogle Scholar
  52. 52.
    Counterman, A.E., Clemmer, D.E.: Anhydrous polyproline helices and globules. J. Phys. Chem. B. 108, 4885–4898 (2004)CrossRefGoogle Scholar
  53. 53.
    Counterman, A.E., Clemmer, D.E.: Gas phase polyalanine: assessment of i → i + 3 and i → i + 4 helical turns in [Alan + 4H]4+ (n = 29–49) ion. J. Phys. Chem. B. 106, 12045–12051 (2002)CrossRefGoogle Scholar
  54. 54.
    Breaux, G.A., Jarrold, M.F.: Probing helix formation in unsolvated peptides. J. Am. Chem. Soc. 125, 10740–10747 (2003)CrossRefPubMedGoogle Scholar
  55. 55.
    Counterman, A.E., Clemmer, D.E.: Compact → extended helix transitions of polyalanine in vacuo. J. Phys. Chem. B. 107, 2111–2117 (2003)CrossRefGoogle Scholar
  56. 56.
    Rossi, M., Blum, V., Kupser, P., Von Helden, G., Bierau, F., Pagel, K., Meijer, G., Scheffler, M.: Secondary structure of Ac-Alan-LysH+ polyalanine peptides (n = 5,10,15) in vacuo: helical or not? J. Phys. Chem. Lett. 1, 3465–3470 (2010)CrossRefGoogle Scholar
  57. 57.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefPubMedGoogle Scholar
  58. 58.
    Ridgeway, M.E., Lubeck, M., Jordens, J., Mann, M., Park, M.A.: Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425, 22–35 (2018)CrossRefGoogle Scholar
  59. 59.
    Michelmann, K., Silveira, J.A., Ridgeway, M.E., Park, M.A.: Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26, 14–24 (2014)CrossRefPubMedGoogle Scholar
  60. 60.
    Badman, E.R., Myung, S., Clemmer, D.E.: Evidence for unfolding and refolding of gas-phase cytochrome c ions in a Paul trap. J. Am. Soc. Mass Spectrom. 16, 1493–1497 (2005)CrossRefPubMedGoogle Scholar
  61. 61.
    Chen, S.H., Russell, D.H.: How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J. Am. Soc. Mass Spectrom. 26, 1433–1443 (2015)CrossRefPubMedGoogle Scholar
  62. 62.
    Bornschein, R.E., Niu, S., Eschweiler, J., Ruotolo, B.T.: Ion mobility–mass spectrometry reveals highly-compact intermediates in the collision induced dissociation of charge-reduced protein complexes. J. Am. Soc. Mass Spectrom. 27, 41–49 (2016)CrossRefPubMedGoogle Scholar
  63. 63.
    Sun, Y., Vahidi, S., Sowole, M.A., Konermann, L.: Protein structural studies by traveling wave ion mobility spectrometry: a critical look at electrospray sources and calibration issues. J. Am. Soc. Mass Spectrom. 27, 31–40 (2016)CrossRefPubMedGoogle Scholar
  64. 64.
    Hudgins, R.R., Mao, Y., Ratner, M.a., Jarrold, M.F.: Conformations of Gly(n)H+ and ala(n)H+ peptides in the gas phase. Biophys. J. 76, 1591–1597 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    De Winter, J., Lemaur, V., Ballivian, R., Chirot, F., Coulembier, O., Antoine, R., Lemoine, J., Cornil, J., Dubois, P., Dugourd, P., Gerbaux, P.: Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem. A Eur. J. 17, 9738–9745 (2011)CrossRefGoogle Scholar
  66. 66.
    Tintaru, A., Chendo, C., Wang, Q., Viel, S., Quéléver, G., Peng, L., Posocco, P., Pricl, S., Charles, L.: Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization—a mass spectrometry, ion mobility and molecular modeling study. Anal. Chim. Acta. 808, 163–174 (2014)CrossRefPubMedGoogle Scholar
  67. 67.
    von Helden, G., Wyttenbach, T., Bowers, M.T.: Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. Ion Process. 146–147, 349–364 (1995)CrossRefGoogle Scholar
  68. 68.
    Wyttenbach, T., Von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)CrossRefGoogle Scholar
  69. 69.
    Ujma, J., Giles, K., Morris, M., Barran, P.E.: New high resolution ion mobility mass spectrometer capable of measurements of collision cross sections from 150 to 520 K. Anal. Chem. 88, 9469–9478 (2016)CrossRefPubMedGoogle Scholar
  70. 70.
    Dickinson, E.R., Jurneczko, E., Pacholarz, K.J., Clarke, D.J., Reeves, M., Ball, K.L., Hupp, T., Campopiano, D., Nikolova, P.V., Barran, P.E.: Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry. Anal. Chem. 87, 3231–3238 (2015)CrossRefPubMedGoogle Scholar
  71. 71.
    Larriba, C., Hogan, C.J.: Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J. Phys. Chem. A. 117, 3887–3901 (2013)CrossRefPubMedGoogle Scholar
  72. 72.
    Larriba, C., Hogan, C.J.: Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation. J. Comput. Phys. 251, 344–336 (2013)CrossRefGoogle Scholar
  73. 73.
    Wu, T., Derrick, J., Nahin, M., Chen, X., Larriba-Andaluz, C.: Optimization of long range potential interaction parameters in ion mobility spectrometry. J. Chem. Phys. 148, 074102 (2018)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Jean R. N. Haler
    • 1
  • Philippe Massonnet
    • 1
  • Johann Far
    • 1
  • Victor R. de la Rosa
    • 2
  • Philippe Lecomte
    • 3
  • Richard Hoogenboom
    • 2
  • Christine Jérôme
    • 3
  • Edwin De Pauw
    • 1
  1. 1.Mass Spectrometry Laboratory, MolSys Research unit, Quartier AgoraUniversity of LiègeLiègeBelgium
  2. 2.Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular ChemistryGhent UniversityGhentBelgium
  3. 3.Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier AgoraUniversity of LiègeLiègeBelgium

Personalised recommendations