Investigation of Hemicryptophane Host-Guest Binding Energies Using High-Pressure Collision-Induced Dissociation in Combination with RRKM Modeling

  • Parisa Bayat
  • David Gatineau
  • Denis Lesage
  • Vincent Robert
  • Alexandre Martinez
  • Richard B. ColeEmail author
Research Article


In advancing host-guest (H-G) chemistry, considerable effort has been spent to synthesize host molecules with specific and well-defined molecular recognition characteristics including selectivity and adjustable affinity. An important step in the process is the characterization of binding strengths of the H-G complexes that is typically performed in solution using NMR or fluorescence. Here, we present a mass spectrometry-based multimodal approach to obtain critical energies of dissociation for two hemicryptophane cages with three biologically relevant guest molecules. A combination of blackbody infrared radiative dissociation (BIRD) and high-pressure collision-induced dissociation (high-pressure CID), along with RRKM modeling, was employed for this purpose. For the two tested hemicryptophane hosts, the cage containing naphthyl linkages exhibited stronger interactions than the cage bearing phenyl linkages. For both cages, the order of guest stability is choline > acetylcholine > betaine. The information obtained by these types of mass spectrometric studies can provide new insight into the structural features that most influence the stability of H-G pairs, thereby providing guidance for future syntheses.

Graphical Abstract


Host-guest chemistry Cryptophanes Blackbody infrared radiative dissociation Collision-induced dissociation MassKinetics 



PB acknowledges financial support from a Bourse Ministérielle awarded by the French government. DG acknowledges support from the Arcane Labex (ANR-11-LABX-0003-01). Financial support from the French National FT-ICR network (FR 3624 CNRS), and the MetaboHUB, ANR-11-INBS-0010 grant are gratefully acknowledged.

Supplementary material

13361_2018_2109_MOESM1_ESM.docx (4.9 mb)
ESM 1 (DOCX 5060 kb)


  1. 1.
    Vincenti, M.: Host–guest chemistry in the mass spectrometer. J. Mass Spectrom. 30, 925–939 (1995)CrossRefGoogle Scholar
  2. 2.
    Cram, D.J., Cram, J.M: Container molecules and their guests. The Royal Society of Chemistry: London (1997)Google Scholar
  3. 3.
    Yang, H., Yuan, B., Zhang, X., Scherman, O.A.: Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 47, 2106–2115 (2014)CrossRefGoogle Scholar
  4. 4.
    Szente, L., Szemán, J.: Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal. Chem. 85, 8024–8030 (2013)CrossRefGoogle Scholar
  5. 5.
    Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H.: Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37 (2011)CrossRefGoogle Scholar
  6. 6.
    Yu, G., Jie, K., Huang, F.: Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev. 115, 7240–7303 (2015)CrossRefGoogle Scholar
  7. 7.
    Hu, Q.-D., Tang, G.-P., Chu, P.K.: Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 47, 2017–2025 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Sun, H., Ma, P.X.: Host−guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery. ACS Nano. 4, 1049–1059 (2010)CrossRefGoogle Scholar
  9. 9.
    Zan, M., Li, J., Luo, S., Ge, Z.: Dual pH-triggered multistage drug delivery systems based on host–guest interaction-associated polymeric nanogels. Chem. Commun. 50, 7824–7827 (2014)CrossRefGoogle Scholar
  10. 10.
    Vriezema, D.M., Aragonès, M.C., Elemans, J.A.A.W., Cornelissen, J.J.L.M., Rowan, A.E., Nolte, R.J.M.: Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005)CrossRefGoogle Scholar
  11. 11.
    Mirabaud, A., Mulatier, J.-C., Martinez, A., Dutasta, J.-P., Dufaud, V.: Merging host-guest chemistry and organocatalysis for the chemical valorization of CO2. Catal. Today. 281, 387–391 (2017)CrossRefGoogle Scholar
  12. 12.
    Bolliger, J.L., Belenguer, A.M., Nitschke, J.R.: Enantiopure water-soluble [Fe4L6] cages: host-guest chemistry and catalytic activity. Angew. Chemie Int. Ed. 52, 7958–7962 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhang, M., Ma, W.J., He, C.T., Jiang, L., Lu, T.B.: Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution. Inorg. Chem. 52, 4873–4879 (2013)CrossRefGoogle Scholar
  14. 14.
    Soylemez, S., Hacioglu, S.O., Kesik, M., Unay, H., Cirpan, A., Toppare, L.: A novel and effective surface design: conducting polymer/β-cyclodextrin host–guest system for cholesterol biosensor. ACS Appl. Mater. Interfaces. 6, 18290–18300 (2014)CrossRefGoogle Scholar
  15. 15.
    Xie, S., Zhang, J., Yuan, Y., Chai, Y., Yuan, R.: An electrochemical peptide cleavage-based biosensor for prostate specific antigen detection via host–guest interaction between ferrocene and β-cyclodextrin. Chem. Commun. 51, 3387–3390 (2015)CrossRefGoogle Scholar
  16. 16.
    Rudkevich, D.M., Leontiev, A.V.: Molecular encapsulation of gases. Aust. J. Chem. 57, 713–722 (2004)CrossRefGoogle Scholar
  17. 17.
    Kosaka, W., Yamagishi, K., Zhang, J., Miyasaka, H.: Gate-opening gas adsorption and host–guest interacting gas trapping behavior of porous coordination polymers under applied AC electric fields. J. Am. Chem. Soc. 136, 12304–12313 (2014)CrossRefGoogle Scholar
  18. 18.
    Gabard, J., Collet, A.: Synthesis of a (D3)-bis(cyclotriveratrylenyl) macrocage by stereospecific replication of a (C3)-subunit. J. Chem. Soc. Chem. Commun. 0, 1137–1139 (1981)Google Scholar
  19. 19.
    Collet, A. Cyclotriveratrylenes and cryptophanes. Tetrahedron 43, 5725–5759 (1987).CrossRefGoogle Scholar
  20. 20.
    Brotin, T., Dutasta, J.-P.: Cryptophanes and their complexes—present and future. Chem. Rev. 109, 88–130 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhang, D., Martinez, A., Dutasta, J.-P.: Emergence of hemicryptophanes: from synthesis to applications for recognition, molecular machines, and supramolecular catalysis. Chem. Rev. 117, 4900–4942 (2017)CrossRefGoogle Scholar
  22. 22.
    Schmitt, A., Robert, V., Dutasta, J., Martinez, A.: Synthesis of the first water-soluble hemicryptophane host: selective recognition of choline in aqueous medium. Org. Lett. 16, 2374–2377 (2014)CrossRefGoogle Scholar
  23. 23.
    Dawei, Z., Gao, G., Guy, L., Robert, V., Dutasta, J.-P.: Martinez, A. a fluorescent heteroditopic hemicryptophane cage for the selective recognition of choline phosphate. Chem. Commun. 51, 2679–2682 (2015)CrossRefGoogle Scholar
  24. 24.
    Perraud, O., Lefevre, S., Robert, V., Martinez, A., Dutasta, J.-P.: Hemicryptophane host as efficient primary alkylammonium ion receptor. Org. Biomol. Chem. 10, 1056–1059 (2012)CrossRefGoogle Scholar
  25. 25.
    Perraud, O., Martinez, A., Dutasta, J.-P.: Exclusive enantioselective recognition of glucopyranosides by inherently chiral hemicryptophanes. Chem. Commun. (Camb). 47, 5861–5863 (2011)CrossRefGoogle Scholar
  26. 26.
    Cochrane, J.R., Schmitt, A., Wille, U., Hutton, C.a.: Synthesis of cyclic peptide hemicryptophanes: enantioselective recognition of a chiral zwitterionic guest. Chem. Commun. (Camb). 49, 8504–8506 (2013)CrossRefGoogle Scholar
  27. 27.
    Perraud, O., Robert, V., Martinez, A., Dutasta, J.P.: The cooperative effect in ion-pair recognition by a ditopic hemicryptophane host. Chem. - A Eur. J. 17, 4177–4182 (2011)CrossRefGoogle Scholar
  28. 28.
    Makita, Y., Sugimoto, K., Furuyoshi, K., Ikeda, K., Fujiwara, S., Shin-ike, T., Ogawa, A.: A zinc(II)-included hemicryptophane: facile synthesis, characterization, and catalytic activity. Inorg. Chem. 49, 7220–7222 (2010)CrossRefGoogle Scholar
  29. 29.
    Perraud, O., Robert, V., Martinez, A., Dutasta, J.-P.: A designed cavity for zwitterionic species: selective recognition of taurine in aqueous media. Chem. - A Eur. J. 17, 13405–13408 (2011)CrossRefGoogle Scholar
  30. 30.
    Yamashita, M., Fenn, J.B.: Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984)CrossRefGoogle Scholar
  31. 31.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  32. 32.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9, 37–70 (1990)CrossRefGoogle Scholar
  33. 33.
    Abdoul-carime, H., Farizon, B., Farizon, M., Mulatier, J.C., Dutasta, J.P., Chermette, H.: Solution vs. gas phase relative stability of the choline/acetylcholine cavitand complexes. Phys. Chem. Chem. Phys. 17, 4448–4457 (2015)CrossRefGoogle Scholar
  34. 34.
    Carroy, G., Lemaur, V., De Winter, J., Isaacs, L., De Pauw, E., Cornil, J., Gerbaux, P.: Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies. Phys. Chem. Chem. Phys. 18, 12557–12568 (2016)CrossRefGoogle Scholar
  35. 35.
    Ma, X., Wei, Z., Xiong, X., Jiang, Y., He, J., Zhang, S., Fang, X., Zhang, X.: Gas-phase fragmentation of host–guest complexes between β-cyclodextrin and small molecules. Talanta. 93, 252–256 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, L., Chai, Y., Sun, C., Armstrong, D.: Complexation of cyclofrunctans with transition metal ions studied by electrospray ionization mass spectrometry and collision-induced dissociation. J. Mass Spectrom. 323–324, 21–27 (2012)CrossRefGoogle Scholar
  37. 37.
    Wei, W., Chu, Y., Wang, R., He, X., Ding, C.: Quantifying non-covalent binding affinity using mass spectrometry: a systematic study on complexes of cyclodextrins with alkali metal cations. Rapid Commun. Mass Spectrom. 29, 927–936 (2015)CrossRefGoogle Scholar
  38. 38.
    Armentrout, P.B., Baer, T.: Gas-phase ion dynamics and chemistry. J. Phys. Chem. 100, 12866–12877 (1996)CrossRefGoogle Scholar
  39. 39.
    Rodgers, M., Armentrout, P.: Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrom. Rev. 19, 215–247 (2000)CrossRefGoogle Scholar
  40. 40.
    Armentrout, P.B.: Mass spectrometry - not just a structural tool: the use of guided ion beam tandem mass spectrometry to determine thermochemistry. J. Am. Soc. Mass Spectrom. 13, 419–434 (2002)CrossRefGoogle Scholar
  41. 41.
    Gatineau, D., Memboeuf, A., Milet, A., Cole, R.B., Dossmann, H., Gimbert, Y., Lesage, D.: Experimental bond dissociation energies of benzylpyridinium thermometer ions determined by threshold-CID and RRKM modeling. Int. J. Mass Spectrom. 417, 69–75 (2017)CrossRefGoogle Scholar
  42. 42.
    Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–158 (2004)CrossRefGoogle Scholar
  43. 43.
    Price, W.D., Schnier, P.D., Williams, E.R.: Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 68, 859–866 (1996)CrossRefGoogle Scholar
  44. 44.
    Price, W.D., Schnier, P.D., Jockusch, R.A., Strittmatter, E.F., Williams, E.R.: Unimolecular reaction kinetics in the high-pressure limit without collisions. J. Am. Chem. Soc. 118, 10640–10644 (1996)CrossRefGoogle Scholar
  45. 45.
    McLuckeya, S.A., Wells, J.M., Stephenson, J.L., Goeringer, D.E.: Novel quadrupole ion trap methods for characterizing the chemistry of gaseous macro-ions. Int. J. Mass Spectrom. 200, 137–161 (2000)CrossRefGoogle Scholar
  46. 46.
    Butcher, D.J., Asano, K.G., Goeringer, D.E., McLuckey, S.a.: Thermal dissociation of gaseous bradykinin ions. J. Phys. Chem. A. 103, 8664–8671 (1999)CrossRefGoogle Scholar
  47. 47.
    Asano, K.G., Goeringer, D.E., McLuckey, S.A.: Thermal dissociation in the quadrupole ion trap: ions derived from leucine enkephalin. Int. J. Mass Spectrom. 185, 207–219 (1999)CrossRefGoogle Scholar
  48. 48.
    Laskin, J., Futrell, J.H.: Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom. Rev. 22, 158–181 (2003)CrossRefGoogle Scholar
  49. 49.
    Laskin, J., Futrell, J.H.: Activation of large lons in FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 135–167 (2005)CrossRefGoogle Scholar
  50. 50.
    Laskin, J., Denisov, E., Futrell, J.H.: Fragmentation energetics of small peptides from multiple-collision activation and surface-induced dissociation in FT-ICR MS. Int. J. Mass Spectrom. 219, 189–201 (2002)CrossRefGoogle Scholar
  51. 51.
    Zeisel, S.H., Blusztajn, J.K.: Choline and human nutrition. Annu. Rev. Nutr. 14, 269–296 (1994)CrossRefGoogle Scholar
  52. 52.
    Angus, J.A., Lew, M.J.: Interpretation of the acetylcholine test of endothelial cell dysfunction in hypertension. J. Hypertens. 10, 179–186 (1992)CrossRefGoogle Scholar
  53. 53.
    Millian, N.S., Garrow, T.a.: Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys. 356, 93–98 (1998)CrossRefGoogle Scholar
  54. 54.
    Finkelstein, J.D., Harris, B.J., Kyle, W.E.: Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Arch. Biochem. Biophys. 153, 320–324 (1972)CrossRefGoogle Scholar
  55. 55.
    Przybylski, C., Bonnet, V., Cézard, C.: Probing the common alkali metal affinity of native and variously methylated β-cyclodextrins by combining electrospray-tandem mass spectrometry and molecular modeling. Phys. Chem. Chem. Phys. 17, 19288–19305 (2015)CrossRefGoogle Scholar
  56. 56.
    Lifshitz, C.: Time-resolved appearance energies, breakdown graphs, and mass spectra: the elusive “kinetic shift”. Mass Spectrom. Rev. 1, 309–348 (1982)CrossRefGoogle Scholar
  57. 57.
    Lifshitz, C.: Kinetic shifts. Eur. J. Mass Spectrom. 8, 85–98 (2002)CrossRefGoogle Scholar
  58. 58.
    Rice, O.K., Ramsperger, H.C.: Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 49, 1617–1629 (1927)CrossRefGoogle Scholar
  59. 59.
    Kassel, L.S.: Studies in homogeneous gas reactions. I. J. Phys. Chem. 32, 225–242 (1928)CrossRefGoogle Scholar
  60. 60.
    Marcus, R.a., Rice, O.K.: The kinetics of the recombination of methyl radicals and iodine atoms. J. Phys. Chem. 55, 894–908 (1951)CrossRefGoogle Scholar
  61. 61.
    Marcus, R.: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys. 20, 359–364 (1952)CrossRefGoogle Scholar
  62. 62.
    Perraud, O., Tommasino, J.B., Robert, V., Albela, B., Khrouz, L., Bonneviot, L., Dutasta, J.P., Martinez, A.: Hemicryptophane-assisted electron transfer: a structural and electronic study. Dalton Trans. 42, 1530–1535 (2013)CrossRefGoogle Scholar
  63. 63.
    Chatelet, B., Payet, E., Perraud, O., Dimitrov-Raytchev, P., Chapellet, L.L., Dufaud, V., Martinez, A., Dutasta, J.P.: Shorter and modular synthesis of hemicryptophane-tren derivatives. Org. Lett. 13, 3706–3709 (2011)CrossRefGoogle Scholar
  64. 64.
    Ichou, F., Lesage, D., Machuron-Mandard, X., Junot, C., Cole, R.B., Tabet, J.-C.: Collision cell pressure effect on CID spectra pattern using triple quadrupole instruments: a RRKM modeling. J. Mass Spectrom. 48, 179–186 (2013)CrossRefGoogle Scholar
  65. 65.
    Schnier, P.D., Price, W.D., Strittmatter, E.F., Williams, E.R.: Dissociation energetics and mechanism of leucine enkephalin (M+H)+ and (2M+X)+ ions (X=H, li, Na, K, and Rb) measured by blackbody infrared radiative dissociation. J. Am. Soc. Mass Spectrom. 8, 771–780 (1997)CrossRefGoogle Scholar
  66. 66.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Jr, J.A.M.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)CrossRefGoogle Scholar
  67. 67.
    Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (Eds.) Theory and Applications of Computational Chemistry : The First Forty Years, pp. 1167–1189. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  68. 68.
    Derrick, P.J., Loyd, P.M., Christie, J.R.: Physical Chemistry of ion reactions in advanced mass spectrometry, vol. 13. Wiley, Chichester (1995)Google Scholar
  69. 69.
    Moon, J.H., Oh, J.Y., Kim, M.S.: A systematic and efficient method to estimate the vibrational frequencies of linear peptide and protein ions with any amino acid sequence for the calculation of Rice-Ramsperger-Kassel-Marcus rate constant. J. Am. Soc. Mass Spectrom. 17, 1749–1757 (2006)CrossRefGoogle Scholar
  70. 70.
    Drahos, L., Karoly, V.: MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions aszí o Drahos and aroly ekey. J. Mass Spectrom. 36, 237–263 (2001)CrossRefGoogle Scholar
  71. 71.
    Naban-Maillet, J., Lesage, D., Bossée, A., Gimbert, Y., Sztáray, J., Vékey, K., Tabet, J.-C.: Internal energy distribution in electrospray ionization. J. Mass Spectrom. 40, 1–8 (2005)CrossRefGoogle Scholar
  72. 72.
    Pak, A., Lesage, D., Gimbert, Y., Vékey, K., Tabet, J.C.: Internal energy distribution of peptides in electrospray ionization: ESI and collision-induced dissociation spectra calculation. J. Mass Spectrom. 43, 447–455 (2008)CrossRefGoogle Scholar
  73. 73.
    Ichou, F., Schwarzenberg, A., Lesage, D., Alves, S., Junot, C., Machuron-Mandard, X., Tabet, J.C.: Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. J. Mass Spectrom. 49, 498–508 (2014)CrossRefGoogle Scholar
  74. 74.
    Chen, P.: Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts. Angew. Chemie Int. Ed. 42, 2832–2847 (2003)CrossRefGoogle Scholar
  75. 75.
    Lesage, D., Blu, J., Tabet, J.C., Gimbert, Y.: Intermolecular versus intramolecular Pauson-Khand reaction in gas phase: limitation and feasibility. J. Organomet. Chem. 809, 7–13 (2016)CrossRefGoogle Scholar
  76. 76.
    Vékey, K.: Internal energy effects in mass spectrometry. J. Mass Spectrom. 31, 445–463 (1996)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.CNRS, Institut Parisien de Chimie Moléculaire, IPCMSorbonne UniversitéParisFrance
  2. 2.CNRS, UMR 5250, DCMUniversity of Grenoble AlpesGrenobleFrance
  3. 3.Laboratoire de Chimie QuantiqueUniversité de StrasbourgStrasbourgFrance
  4. 4.UMR CNRS 7313-iSm2, Equipe ChirosciencesAix Marseille UniversitéMarseilleFrance

Personalised recommendations