Advertisement

Ammonia-Assisted Proton Transfer Reaction Mass Spectrometry for Detecting Triacetone Triperoxide (TATP) Explosive

  • Qiangling Zhang
  • Xue Zou
  • Qu Liang
  • Hongmei Wang
  • Chaoqun Huang
  • Chengyin Shen
  • Yannan Chu
Research Article

Abstract

Proton transfer reaction mass spectrometry (PTR-MS) usually detects different types of compounds by changing the discharge gas to produce different reagent ions in the ion source. In the present work, a novel method of changing reagent ions, ammonia-assisted PTR-MS, was developed. Through an injection port bypass, ammonia was injected into a homemade PTR-MS device. A conventional PTR-MS apparatus with reagent ions H3O+(H2O)n (n = 0, 1, 2) can be converted to an ammonia-assisted PTR-MS with reagent ions NH4+.The new method was introduced to detect triacetone triperoxide (TATP) explosive material. Results showed that the sensitivity is enhanced more than 37 times compared with TATP detection using conventional PTR-MS and the limit of detection (LOD) could reach 1.3 ppb. TATP in real complex matrixes can also be detected successfully using this method. Compared to conventional PTR-MS, ammonia-assisted PTR-MS has better sensitivity and better LOD for TATP detection, and the technique provides common users with a convenient and quick method to change reagent ions. The users of PTR-MS can easily obtain other reagent ions by injecting different assisted gases into an injection port to meet different detection needs.

Graphical Abstract

Keywords

Conventional PTR-MS Ammonia-assisted PTR-MS Assisted gases TATP 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFC0200200), the National Natural Science Foundation of China (Nos. 21777163, 21477132, 21577145), the Anhui Provincial Program for Science and Technology Development, China (No. 1604d0802001), and the Key Program of 13th Five-Year Plan, CASHIPS (No. KP-2017-25).

Supplementary material

13361_2018_2108_MOESM1_ESM.docx (702 kb)
ESM 1 (DOCX 701 kb)

References

  1. 1.
    Ezoe, R., Imasaka, T., Imasaka, T.: Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry. Anal. Chim. Acta. 853, 508–513 (2015)CrossRefPubMedGoogle Scholar
  2. 2.
    Gamble, S.C., Campos, L.C., Morgan, R.M.: Detection of trace peroxide explosives in environmental samples using solid phase extraction and liquid chromatography mass spectrometry. Environ. Forensic. 18, 50–61 (2017)CrossRefGoogle Scholar
  3. 3.
    Schulte-Ladbeck, R., Kolla, P., Karst, U.: Trace analysis of peroxide-based explosives. Anal. Chem. 75, 731–735 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    Fan, W., Young, M., Canino, J., Smith, J., Oxley, J., Almirall, J.R.: Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector. Anal. Bioanal. Chem. 403, 401–408 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    Ewing, R.G., Waltman, M.J., Atkinson, D.A.: Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization. Anal. Chem. 83, 4838–4844 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
    Kozole, J., Levine, L.A., Tomlinson-Phillips, J., Stairs, J.R.: Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Talanta. 140, 10–19 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    Mamo, S.K., Gonzalez-Rodriguez, J.: Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). Sensors. 14, 23269–23282 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    Can, Z.Y., Uzer, A., Turkekul, K., Ercag, E., Apak, R.: Determination of triacetone triperoxide with a N,N-dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles. Anal. Chem. 87, 9589–9594 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    Ellis, A.M., Mayhew, C.A.: Proton transfer reaction mass spectrometry: principles and applications. Wiley, New York (2014)CrossRefGoogle Scholar
  10. 10.
    Lindinger, W., Hansel, A., Jordan, A.: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27, 347–354 (1998)CrossRefGoogle Scholar
  11. 11.
    Zou, X., Kang, M., Li, A.Y., Shen, C.Y., Chu, Y.N.: Spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) for rapid and sensitive online monitoring of benzene in water. Anal. Chem. 88, 3144–3148 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    Yuan, B., Koss, A.R., Warneke, C., Coggon, M., Sekimoto, K., de Gouw, J.A.: Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chem. Rev. 117, 13187–13229 (2017)CrossRefPubMedGoogle Scholar
  13. 13.
    Zou, X., Lu, Y., Xia, L., Zhang, Y.T., Li, A.Y., Wang, H.M., Huang, C.Q., Shen, C.Y., Chu, Y.N.: Detection of volatile organic compounds in a drop of urine by ultrasonic nebulization extraction proton transfer reaction mass spectrometry. Anal. Chem. 90, 2210–2215 (2018)CrossRefPubMedGoogle Scholar
  14. 14.
    Warneke, C., Veres, P., Murphy, S.M., Soltis, J., Field, R.A., Graus, M.G., Koss, A., Li, S.M., Li, R., Yuan, B., Roberts, J.M., de Gouw, J.A.: PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmos. Meas. Tech. 8, 411–420 (2015)CrossRefGoogle Scholar
  15. 15.
    Pan, Y., Zhang, Q.L., Zhou, W.Z., Zou, X., Wang, H.M., Huang, C.Q., Shen, C.Y., Chu, Y.N.: Detection of ketones by a novel technology: dipolar proton transfer reaction mass spectrometry (DP-PTR-MS). J. Am. Soc. Mass Spectrom. 28, 873–879 (2017)CrossRefPubMedGoogle Scholar
  16. 16.
    Sulzer, P., Petersson, F., Agarwal, B., Becker, K.H., Juerschik, S., Maerk, T.D., Perry, D., Watts, P., Mayhew, C.A.: Proton transfer reaction mass spectrometry and the unambiguous real-time detection of 2,4,6 trinitrotoluene. Anal. Chem. 84, 4161–4166 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    Gonzalez-Mendez, R., Reich, D.F., Mullock, S.J., Corlett, C.A., Mayhew, C.A.: Development and use of a thermal desorption unit and proton transfer reaction mass spectrometry for trace explosive detection: determination of the instrumental limits of detection and an investigation of memory effects. Int. J. Mass Spectrom. 385, 13–18 (2015)CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Mendez, R., Watts, P., Olivenza-Leon, D., Reich, D.F., Mullock, S.J., Corlett, C.A., Cairns, S., Hickey, P., Brookes, M., Mayhew, C.A.: Enhancement of compound selectivity using a radio frequency ion funnel proton transfer reaction mass spectrometer: improved specificity for explosive compounds. Anal. Chem. 88, 10624–10630 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    Gonzalez-Mendez, R., Watts, P., Reich, D.F., Mullock, S.J., Cairns, S., Hickey, P., Brookes, M., Mayhew, C.A.: Use of rapid reduced electric field switching to enhance compound specificity for proton transfer reaction-mass spectrometry. Anal. Chem. 90, 5664–5670 (2018)CrossRefPubMedGoogle Scholar
  20. 20.
    Agarwal, B., Petersson, F., Juerschik, S., Sulzer, P., Jordan, A., Maerk, T.D., Watts, P., Mayhew, C.A.: Use of proton transfer reaction time-of-flight mass spectrometry for the analytical detection of illicit and controlled prescription drugs at room temperature via direct headspace sampling. Anal. Bioanal. Chem. 400, 2631–2639 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    Shen, C.Y., Li, J.Q., Han, H.Y., Wang, H.M., Jiang, H.H., Chu, Y.N.: Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer. Int. J. Mass Spectrom. 285, 100–103 (2009)CrossRefGoogle Scholar
  22. 22.
    Nazarov, E.G., Miller, R.A., Eiceman, G.A., Stone, J.A.: Miniature differential mobility spectrometry using atmospheric pressure photoionization. Anal. Chem. 78, 4553–4563 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    Inomata, S., Tanimoto, H.: Differentiation of isomeric compounds by two-stage proton transfer reaction time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 325–331 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Bohme, D.K., Mackay, G.I., Tanner, S.D.: An experimental study of the gas-phase kinetics of reactions with hydrated H3O+ ions (n = 1-3) at 298 K. J. Am. Chem. Soc. 101, 3724–3730 (1979)CrossRefGoogle Scholar
  25. 25.
    Szulejko, J.E., McMahon, T.B.: Progress toward an absolute gas-phase proton affinity scale. J. Am. Chem. Soc. 115, 7839–7848 (1993)CrossRefGoogle Scholar
  26. 26.
    Kawai, Y., Yamaguchi, S., Okada, Y., Takeuchi, K., Yamauchi, Y., Ozawa, S., Nakai, H.: Reactions of protonated water clusters H+(H2O)(n) (n=1-6) with dimethylsulfoxide in a guided ion beam apparatus. Chem. Phys. Lett. 377, 69–73 (2003)CrossRefGoogle Scholar
  27. 27.
    Oxley, J.C., Smith, J.L., Shinde, K., Moran, J.: Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos. Pyrotech. 30, 127–130 (2005)CrossRefGoogle Scholar
  28. 28.
    Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., Alt, A., Keinan, E.: Decomposition of triacetone triperoxide is an entropic explosion. J. Am. Chem. Soc. 127, 1146–1159 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang, Q.L., Zou, X., Liang, Q., Zhang, Y.T., Yi, M.J., Wang, H.M., Huang, C.Q., Shen, C.Y., Chu, Y.N.: Development of dipolar proton transfer reaction mass spectrometer for real-time monitoring of volatile organic compounds in ambient air. Chin. J. Anal. Chem. 46, 471–478 (2018)CrossRefGoogle Scholar
  30. 30.
    Sigman, M.E., Clark, C.D., Fidler, R., Geiger, C.L., Clausen, C.A.: Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization. Rapid Commun. Mass Spectrom. 20, 2851–2857 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    Marr, A.J., Groves, D.M.: Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int. J. Ion Mobil. Spectrom. 6, 62–65 (2003)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  4. 4.Hefei Cancer HospitalChinese Academy of SciencesHefeiChina

Personalised recommendations