Advertisement

A Microscale Planar Linear Ion Trap Mass Spectrometer

  • Trevor K. Decker
  • Yajun Zheng
  • Aaron J. Ruben
  • Xiao Wang
  • Stephen A. Lammert
  • Daniel E. Austin
  • Aaron R. HawkinsEmail author
Research Article

Abstract

The planar linear ion trap (PLIT) is a version of the two-dimensional linear quadrupole ion trap constructed using two facing dielectric substrates on which electrodes are lithographically patterned. In this article, we present a PLIT that was successfully miniaturized from a radius of 2.5 mm to a microscale radius of 800 μm (a scaling factor of 3.125). The mathematics concerning scaling an ion trap mass spectrometer are demonstrated—including the tradeoff between RF power and pseudopotential well depth. The time average power for the microscale PLIT is, at best, ~ 1/100 that of the PLIT but at a cost of potential well depth of ~ 1/10 the original. Experimental data using toluene/deuterated toluene and isobutylbenze to verify trap performance demonstrated resolutions around 1.5 Da at a pressure of 5.4 × 10−3 Torr. The microscale PLIT was shown to retain resolutions between 2.3 and 2.7 Da at pressures up to 42 × 10−3 Torr while consuming a factor of 3.38 less time average power than the unscaled PLIT.

Graphical Abstract

Keywords

Mass spectrometry Ion trap miniaturization Ion traps Instrumentation 

Notes

References

  1. 1.
    Cooks, R.G., Kaiser, R.E.: Quadrupole ion trap mass spectrometry. Acc. Chem. Res. 23, 213–219 (1990)CrossRefGoogle Scholar
  2. 2.
    Holzscheiter, M.H.: A brief history in time of ion traps and their achievements in science. Phys. Scr. T59, 69–76 (1995)CrossRefGoogle Scholar
  3. 3.
    March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)CrossRefGoogle Scholar
  4. 4.
    March, R. E. In Encyclopedia of Analytical Chemistry, Meyers, R. A., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2000, pp 11848–11871Google Scholar
  5. 5.
    March, R.E., Todd, J.F.J.: Quadrupole Ion Trap Mass Sepctrometry. John Wiley & Sons, Inc., Hoboken, New Jersey (2005)CrossRefGoogle Scholar
  6. 6.
    Pedder, R. E. Fundamental Studies in Quadrupole Ion Trap Mass Spectrometry. dissertation, University of Florida1992Google Scholar
  7. 7.
    Paul, W., Steinwedel, H.: Notizen: Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A. 8, (1953)Google Scholar
  8. 8.
    Palmer, P.T., Limero, T.F.: Mass spectrometry in the U.S. space program: past, present, and future. J. Am. Soc. Mass Spectrom. 12, 656–675 (2001)CrossRefGoogle Scholar
  9. 9.
    Ye, H., Gemperline, E., Li, L.: A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin. Chim. Acta. 420, 11–22 (2013)CrossRefGoogle Scholar
  10. 10.
    Li, L.F., Chen, T.C., Ren, Y., Hendricks, P.I., Cooks, R.G., Ouyang, Z.: Mini 12, miniature mass spectrometer for clinical and other applications—introduction and characterization. Anal. Chem. 86, 2909–2916 (2014)CrossRefGoogle Scholar
  11. 11.
    Laturnus, F., Grøn, C.: Organic waste products in agriculture—monitoring the waste constituents phthalate esters in soil-crop system by gas chromatography and ion trap tandem mass spectrometry. J. Environ. Eng. Landsc. Manag. 15, 253–260 (2007)CrossRefGoogle Scholar
  12. 12.
    Austin, D.E., Peng, Y., Hansen, B.J., Miller, I.W., Rockwood, A.L., Hawkins, A.R., Tolley, S.E.: Novel ion traps using planar resistive electrodes: implications for miniaturized mass analyzers. J. Am. Soc. Mass Spectrom. 19, 1435–1441 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, A., Hansen, B.J., Powell, A.T., Hawkins, A.R., Austin, D.E.: Miniaturization of a planar-electrode linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 28, 1338–1344 (2014)CrossRefGoogle Scholar
  14. 14.
    Derkits, D., Wiseman, A., Snead, R.F., Dows, M., Harge, J., Lamp, J.A., Gronert, S.: Development and evaluation of a variable-temperature quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 27, 339–343 (2016)CrossRefGoogle Scholar
  15. 15.
    Taylor, N., Austin, D.E.: A simplified toroidal ion trap mass analyzer. Int. J. Mass Spectrom. Ion Process. 321-322, 25–32 (2012)CrossRefGoogle Scholar
  16. 16.
    Wu, Q., Li, A., Tian, Y., Zare, R.N., Austin, D.E.: Miniaturized linear wire ion trap mass analyzer. Anal. Chem. 88, 7800–7806 (2016)CrossRefGoogle Scholar
  17. 17.
    Sinha, M.P., Tomassian, A.D.: Development of a miniaturized, light-weight magnetic sector for a field-portable mass spectrograph. Rev Sci Instrum. 62, 2618–2620 (1991)CrossRefGoogle Scholar
  18. 18.
    He, M.Y., Xue, Z.H., Zhang, Y.N., Huang, Z.J., Fang, X., Qu, F., Ouyang, Z., Xu, W.: Development and characterizations of a miniature capillary electrophoresis mass spectrometry system. Anal. Chem. 87, 2236–2241 (2015)CrossRefGoogle Scholar
  19. 19.
    Bryden, W.A., Benson, R.C., Ecelberger, S.A., Phillips, T.E., Cotter, R.J., Fenselau, C.: The tiny-TOF mass spectrometer for chemical and biological sensing Johns Hopkins APL Technol. Dig. 16, 296–310 (1995)Google Scholar
  20. 20.
    Getty, S.A., Brinckerhoff, W.B., Cornish, T., Ecelberger, S., Floyd, M.: Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26, 2786–2790 (2012)CrossRefGoogle Scholar
  21. 21.
    Patterson, G.E., Guymon, A.J., Riter, L.S., Everly, M., Griep-Raming, J., Laughlin, B.C., Ouyang, Z., Cooks, R.G.: Miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74, 6145–6153 (2002)CrossRefGoogle Scholar
  22. 22.
    Badman, E.R., Cooks, R.G.: A parallel miniature cylindrical ion trap array. Anal. Chem. 72, 3291–3297 (2000)CrossRefGoogle Scholar
  23. 23.
    Gao, L., Song, Q., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)CrossRefGoogle Scholar
  24. 24.
    Fico, M., Maas, J.D., Smith, S.A., Costa, A.B., Ouyang, Z., Chappell, W.J., Cooks, R.G.: Circular arrays of polymer-based miniature rectilinear ion traps. Analyst. 134, 1338–1347 (2009)CrossRefGoogle Scholar
  25. 25.
    Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)CrossRefGoogle Scholar
  26. 26.
    Brinckerhoff, W.B., Pinnick, V.T., van Amerom, F.H.W., Danell, R.M., Arevalo, R.D., Atanassova, M.S., Xiang, L., Mahaffy, P.R., Cotter, R.J., Goesmann, F., Steininger, H.: IEEE Aerospace Conference. 2013, 1–8 (2013)Google Scholar
  27. 27.
    Kornienko, O., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Micro ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 13, 50–53 (1999)CrossRefGoogle Scholar
  28. 28.
    Wright, S., Malcolm, A., Wright, C., O'Prey, S., Crichton, E., Dash, N., Moseley, R.W., Zaczek, W., Edwards, P., Fussell, R.J., Syms, R.R.: A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer. Anal Chem. 87, 3115–3122 (2015)CrossRefGoogle Scholar
  29. 29.
    Malcolm, A., Wright, S., Syms, R.R., Dash, N., Schwab, M.A., Finlay, A.: Miniature mass spectrometer systems based on a microengineered quadrupole filter. Anal. Chem. 82, 1751–1758 (2010)CrossRefGoogle Scholar
  30. 30.
    Chaudhary, A., van Amerom, F., Short, R.T.: Development of microfabricated cylindrical ion trap mass spectrometer arrays. J. Microelectromech. Syst. 18, 442–448 (2009)CrossRefGoogle Scholar
  31. 31.
    Fox, J., Saini, R., Tsui, K., Verbeck, G.: Microelectromechanical system assembled ion optics: an advance to miniaturization and assembly of electron and ion optics. Rev Sci Instrum. 80, 093302 (2009)CrossRefGoogle Scholar
  32. 32.
    Geear, M., Syms, R.R.A., Wright, S., Holmes, A.S.: Monolithic MEMS quadrupole mass spectrometers by deep silicon etching. J. Microelectromech. Syst. 14, 1156–1166 (2005)CrossRefGoogle Scholar
  33. 33.
    Pau, S., Whitten, W.B., Ramsey, J.M.: Planar geometry for trapping and separating ions and charged particles. Anal. Chem. 79, 6857–6861 (2007)CrossRefGoogle Scholar
  34. 34.
    Douglas, D.J., Frank, A.J., Mao, D.: Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24, 1–29 (2005)CrossRefGoogle Scholar
  35. 35.
    Li, G., Li, D., Cheng, Y., Pei, X., Zhang, H., Wang, Y., Sun, J., Dong, M.: Development of a low power miniature linear ion trap mass spectrometer with extended mass range. Rev Sci Instrum. 88, 123108 (2017)CrossRefGoogle Scholar
  36. 36.
    Huang, Y., Li, G.-Z., Guan, S., Marshall, A.G.: A combined linear ion trap for mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 962–969 (1997)CrossRefGoogle Scholar
  37. 37.
    Tian, Y., Higgs, J., Li, A., Barney, B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)CrossRefGoogle Scholar
  38. 38.
    Xue, B., Sun, L., Huang, Z., Gao, W., Fan, R., Cheng, P., Ding, L., Ma, L., Zhou, Z.: A hand-portable digital linear ion trap mass spectrometer. Analyst. 141, 5535–5542 (2016)CrossRefGoogle Scholar
  39. 39.
    Ouyang, Z., Noll, R.J., Cooks, R.G.: Handheld miniature ion trap mass spectrometers. Anal. Chem. 81, 2421–2425 (2009)CrossRefGoogle Scholar
  40. 40.
    Contreras, J.A., Murray, J.A., Tolley, S.E., Oliphant, J.L., Tolley, H.D., Lammert, S.A., Lee, E.D., Later, D.W., Lee, M.L.: Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectrom. 19, 1425–1434 (2008)CrossRefGoogle Scholar
  41. 41.
    Ulaby, F. T.; Ravaioli, U. Fundamentals of Applied Electromagnetics, 7 ed.; Pearson Education Inc.: New Jersey, 2015Google Scholar
  42. 42.
    Dehmelt, H. G. In Adv At Mol Phys, Bates, D. R.; Estermann, I., Eds.; Academic Press, 1968, pp 53–72Google Scholar
  43. 43.
    Pau, S., Pai, C.S., Low, Y.L., Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Microfabricated quadrupole ion trap for mass spectrometer applications. Phys. Rev. Lett. 96, (2006)Google Scholar
  44. 44.
    Blakeman, K.H., Wolfe, D.W., Cavanaugh, C.A., Ramsey, J.M.: High pressure mass spectrometry: the generation of mass spectra at operating pressures exceeding 1 Torr in a microscale cylindrical ion trap. Anal. Chem. 88, 5378–5384 (2016)CrossRefGoogle Scholar
  45. 45.
    Moxom, J., Reilly, P.T., Whitten, W.B., Ramsey, J.M.: Double resonance ejection in a micro ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 755–760 (2002)CrossRefGoogle Scholar
  46. 46.
    Song, Q., Xu, W., Smith, S.A., Gao, L., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Ion trap mass analysis at high pressure: an experimental characterization. J. Mass Spectrom. 45, 26–34 (2010)Google Scholar
  47. 47.
    Yang, M., Kim, T.Y., Hwang, H.C., Yi, S.K., Kim, D.H.: Development of a palm portable mass spectrometer. J. Am. Soc. Mass Spectrom. 19, 1442–1448 (2008)CrossRefGoogle Scholar
  48. 48.
    Xu, W., Song, Q., Smith, S.A., Chappell, W.J., Ouyang, Z.: Ion trap mass analysis at high pressure: a theoretical view. J. Am. Soc. Mass Spectrom. 20, 2144–2153 (2009)CrossRefGoogle Scholar
  49. 49.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)CrossRefGoogle Scholar
  50. 50.
    Syka, J.E.P., Marto, J.A., Bai, D.L., Horning, S., Senko, M.W., Schwartz, J.C., Ueberheide, B., Garcia, B., Busby, S., Muratore, T., Shabanowitz, J., Hunt, D.F.: Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 3, 621–626 (2004)CrossRefGoogle Scholar
  51. 51.
    Sudakov, M.Y., Apatskaya, M.V., Vitukhin, V.V., Trubitsyn, A.A.: A new linear ion trap with simple electrodes. J. Anal. Chem. 67, 1057–1065 (2012)CrossRefGoogle Scholar
  52. 52.
    Wang, M., Quist, H.E., Hansen, B.J., Peng, Y., Zhang, Z., Hawkins, A.R., Rockwood, A.L., Austin, D.E., Lee, M.L.: Performance of a halo ion trap mass analyzer with exit slits for axial ejection. J. Am. Soc. Mass Spectrom. 22, 369–378 (2011)CrossRefGoogle Scholar
  53. 53.
    Peng, Y., Hansen, B.J., Quist, H., Zhang, Z., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)CrossRefGoogle Scholar
  54. 54.
    Zhang, Z., Peng, Y., Hansen, B.J., Miller, I.W., Wang, M., Lee, M.L., Hawkins, A.R., Austin, D.E.: Paul trap mass analyzer consisting of opposing microfabricated electrode plates. Anal. Chem. 81, 5241–5248 (2009)CrossRefGoogle Scholar
  55. 55.
    Tian, Y., Decker, T.K., McClellan, J.S., Bennett, L., Li, A., De la Cruz, A., Andrews, D., Lammert, S.A., Hawkins, A.R., Austin, D.E.: Improved miniaturized linear ion trap mass spectrometer using lithographically patterned plates and tapered ejection slit. J. Am. Soc. Mass Spectrom. 29, 213–222 (2018)CrossRefGoogle Scholar
  56. 56.
    Decker, T.K., Tian, Y., McClellan, J.S., Bennett, L., Lammert, S.A., Austin, D.E., Hawkins, A.R.: Optimal fabrication methods for miniature coplanar ion traps. Rapid Commun. Mass Spectrom. 32, 289–294 (2018)CrossRefGoogle Scholar
  57. 57.
    Hansen, B.J., Niemi, R.J., Hawkins, A.R., Lammert, S.A., Austin, D.E., Lithographically Patterned, A.: Discrete planar electrode linear ion trap mass spectrometer. J. Microelectromech. Syst. 22, 876–883 (2013)CrossRefGoogle Scholar
  58. 58.
    Decker, T.K., Zheng, Y., McClellan, J.S., Ruben, A.J., Lammert, S.A., Austin, D.E., Hawkins, A.R.: Double resonance ejection using novel RF phase tracking circuitry in a miniaturized planar linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. (2018)Google Scholar
  59. 59.
    Todd, J.F.J., Mylchreest, I.C., Berry, A.J., Games, D.E., Smith, R.D., Chapman, J.R.: Supercritical fluid chromatography/mass spectrometry with an ion trap detector. Rapid Commun. Mass Spectrom. 2, 55–58 (1988)CrossRefGoogle Scholar
  60. 60.
    Whitten, W.B., Reilly, P.T., Ramsey, J.M.: High-pressure ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1749–1752 (2004)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Brigham Young UniversityProvoUSA

Personalised recommendations