Advertisement

Characterization of Protein Disulfide Linkages by MS In-Source Dissociation Comparing to CID and ETD Tandem MS

  • Xiaojuan LiEmail author
  • Xiaoyu Yang
  • Van Hoang
  • Yan-Hui Liu
Research Article

Abstract

Direct characterization of disulfide linkages in proteins by mass spectrometry has been challenging. Here, we report analysis of disulfide linkages in insulin variant, endothelin 3, and relaxin 2 by in-source dissociation (ISD) during LC-MS. A duplet insulin peptide from Glu-C digestion that contains peptides p1 and p2 (from chains A and B, respectively) was selected as a model peptide. This duplet peptide has an inter-chain disulfide bond between p1 and p2, and an intra-chain disulfide bond in p1. To compare the gas-phase fragmentation, it was subjected to ISD MS and MS/MS methods, including collision-induced dissociation (CID) and electron transfer dissociation (ETD). The pattern and efficiency of peptide backbone and disulfide cleavage varied with these dissociation methods. ETD, CID, and ISD were able to generate single backbone, double backbone, and triple (double backbone and single disulfide bond) cleavages in this model peptide, respectively. Specifically, CID did not cleave disulfide bonds and ETD was able to only cleave the inter-chain disulfide bond at low efficiency, limiting their usage in this disulfide analysis. In contrast, ISD was able to cleave the intra-chain disulfide bond in addition to peptide backbone, creating multiple fragment ions that allow accurate assignment of both intra- and inter-chain disulfide linkages. ISD was also successfully applied to determine double disulfide linkages in endothelin 3 and relaxin 2 peptides. This study contributes to the fundamental understanding of disulfide bond cleavages in different gas-phase fragmentations and provides an efficient cleavage strategy for identification of disulfide bonds in proteins by ISD ESI-MS.

Graphical Abstract

Keywords

Disulfide bond Insulin Relaxin 2 Endothelin 3 In-source dissociation (ISD) LC-MS CID ETD MS/MS Glu-C digestion Trypsin and Lys-C digestion 

Notes

Acknowledgements

The authors thank Michael J. Iammarino for providing the sample.

Supplementary material

13361_2018_2103_MOESM1_ESM.docx (48 kb)
ESM 1 (DOCX 48 kb)

References

  1. 1.
    Chang, S.G., Choi, K.D., Jang, S.H., Shin, H.C.: Role of disulfide bonds in the structure and activity of human insulin. Mol. Cells. 16, 323–330 (2003)Google Scholar
  2. 2.
    Hatting, M., Tavares, C.D.J., Sharabi, K., Rines, A.K., Puigserver, P.: Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 1411, 21–35 (2018)CrossRefGoogle Scholar
  3. 3.
    Kim, S.H., Park, M.J.: Effects of growth hormone on glucose metabolism and insulin resistance in human. Ann. Pediatr. Endocrinol. Metab. 22, 145–152 (2017)CrossRefGoogle Scholar
  4. 4.
    Hua, Q.X.: Insulin: a small protein with a long journey. Protein Cell. 1, 537–551 (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, F., Zaykov, A.N., Levy, J.J., DiMarchi, R.D., Mayer, J.P.: Chemical synthesis of peptides within the insulin superfamily. J. Pept. Sci. 22, 260–270 (2016)CrossRefGoogle Scholar
  6. 6.
    Davies, M., Dahl, D., Heise, T., Kiljanski, J., Mathieu, C.: Introduction of biosimilar insulins in Europe. Diabet. Med. 34, 1340–1353 (2017)CrossRefGoogle Scholar
  7. 7.
    Weiss, G.: Relaxin. Annu. Rev. Physiol. 46, 43–52 (1984)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, T.N., Speed, T.P., Tregear, G.W., Bathgate, R.A.: Evolution of the relaxin-like peptide family. BMC Evol. Biol. 5, (2005)Google Scholar
  9. 9.
    Masaki, T.: Historical review: endothelin. Trends Pharmacol. Sci. 25, 219–224 (2004)CrossRefGoogle Scholar
  10. 10.
    Kedzierski, R.M., Yanagisawa, M.: Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41, 851–876 (2001)CrossRefGoogle Scholar
  11. 11.
    Bures, E.J., Hui, J.O., Young, Y., Chow, D.T., Katta, V., Rohde, M.F., Zeni, L., Rosenfeld, R.D., Stark, K.L., Haniu, M.: Determination of disulfide structure in agouti-related protein (AGRP) by stepwise reduction and alkylation. Biochemistry. 37, 12172–12177 (1998)CrossRefGoogle Scholar
  12. 12.
    Gray, W.R.: Disulfide structures of highly bridged peptides - a new strategy for analysis. Protein Sci. 2, 1732–1748 (1993)CrossRefGoogle Scholar
  13. 13.
    Gray, W.R.: Echistatin disulfide bridges - selective reduction and linkage assignment. Protein Sci. 2, 1749–1755 (1993)CrossRefGoogle Scholar
  14. 14.
    Yen, T.Y., Yan, H., Macher, B.A.: Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 37, 15–30 (2002)CrossRefGoogle Scholar
  15. 15.
    Tsai, P.L., Chen, S.F., Huang, S.Y.: Mass spectrometry-based strategies for protein disulfide bond identification. Rev. Anal. Chem. 32, 257–268 (2013)CrossRefGoogle Scholar
  16. 16.
    Lioe, H., O'Hair, R.A.J.: A novel salt bridge mechanism highlights the need for nonmobile proton conditions to promote disulfide bond cleavage in protonated peptides under low-energy collisional activation. J. Am. Soc. Mass Spectrom. 18, 1109–1123 (2007)CrossRefGoogle Scholar
  17. 17.
    Lioe, H., Duan, M., O'Hair, R.A.J.: Can metal ions be used as gas-phase disulfide bond cleavage reagents? A survey of coinage metal complexes of model peptides containing an intermolecular disulfide bond. Rapid Commun. Mass Spectrom. 21, 2727–2733 (2007)CrossRefGoogle Scholar
  18. 18.
    Kim, H.I., Beauchamp, J.L.: Mapping disulfide bonds in insulin with the route 66 method: selective cleavage of S-C bonds using alkali and alkaline earth metal enolate complexes. J. Am. Soc. Mass Spectrom. 20, 157–166 (2009)CrossRefGoogle Scholar
  19. 19.
    Durand, K.L., Tan, L., Stinson, C.A., Love-Nkansah, C.B., Ma, X.X., Xia, Y.: Assigning peptide disulfide linkage pattern among regio-isomers via methoxy addition to disulfide and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1099–1108 (2017)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Loo, R.R.O., Loo, J.A.: Increasing fragmentation of disulfide-bonded proteins for top-down mass spectrometry by supercharging. Int. J. Mass Spectrom. 377, 546–556 (2015)CrossRefGoogle Scholar
  21. 21.
    Cramer, C.N., Kelstrup, C.D., Olsen, J.V., Haselmann, K.F., Nielsen, P.K.: Complete mapping of complex disulfide patterns with closely-spaced cysteines by in-source reduction and data-dependent mass spectrometry. Anal. Chem. 89, 5949–5957 (2017)CrossRefGoogle Scholar
  22. 22.
    Cramer, C.N., Kelstrup, C.D., Olsen, J.V., Haselmann, K.F., Nielsen, P.K.: Generic workflow for mapping of complex disulfide bonds using in-source reduction and extracted ion chromatograms from data dependent mass spectrometry. Anal. Chem. 90, 8202–8210 (2018)CrossRefGoogle Scholar
  23. 23.
    Cramer, C.N., Haselmann, K.F., Olsen, J.V., Nielsen, P.K.: Disulfide linkage characterization of disulfide bond-containing proteins and peptides by reducing electrochemistry and mass spectrometry. Anal. Chem. 88, 1585–1592 (2016)CrossRefGoogle Scholar
  24. 24.
    Nicolardi, S., Deelder, A.M., Palmblad, M., van der Burgt, Y.E.M.: Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 5376–5382 (2014)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Cui, W.D., Zhang, H., Dewald, H.D., Chen, H.: Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal. Chem. 84, 3838–3842 (2012)CrossRefGoogle Scholar
  26. 26.
    Nicolardi, S., Giera, M., Kooijman, P., Kraj, A., Chervet, J.P., Deelder, A.M., van der Burgt, Y.E.M.: On-line electrochemical reduction of disulfide bonds: improved FTICR-CID and -ETD coverage of oxytocin and hepcidin. J. Am. Soc. Mass Spectrom. 24, 1980–1987 (2013)CrossRefGoogle Scholar
  27. 27.
    Kraj, A., Brouwer, H.J., Reinhoud, N., Chervet, J.P.: A novel electrochemical method for efficient reduction of disulfide bonds in peptides and proteins prior to MS detection. Anal. Bioanal. Chem. 405, 9311–9320 (2013)CrossRefGoogle Scholar
  28. 28.
    Zheng, Q.L., Zhang, H., Chen, H.: Integration of online digestion and electrolytic reduction with mass spectrometry for rapid disulfide-containing protein structural analysis. Int. J. Mass Spectrom. 353, 84–92 (2013)CrossRefGoogle Scholar
  29. 29.
    Switzar, L., Nicolardi, S., Rutten, J.W., Oberstein, S., Aartsma-Rus, A., van der Burgt, Y.E.M.: In-depth characterization of protein disulfide bonds by online liquid chromatography-electrochemistry-mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 50–58 (2016)CrossRefGoogle Scholar
  30. 30.
    Xia, Y., Cooks, R.G.: Plasma induced oxidative cleavage of disulfide bonds in polypeptides during nanoelectrospray ionization. Anal. Chem. 82, 2856–2864 (2010)CrossRefGoogle Scholar
  31. 31.
    Chrisman, P.A., McLuckey, S.A.: Dissociations of disulfide-linked gaseous polypeptide/protein anions: ion chemistry with implications for protein identification and characterization. J. Proteome Res. 1, 549–557 (2002)CrossRefGoogle Scholar
  32. 32.
    Chelius, D., Wimer, M.E.H., Bondareriko, P.V.: Reversed-phase liquid chromatography in-line with negative ionization electrospray mass spectrometry for the characterization of the disulfide-linkages of an immunoglobulin gamma antibody. J. Am. Soc. Mass Spectrom. 17, 1590–1598 (2006)CrossRefGoogle Scholar
  33. 33.
    Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2862 (1999)CrossRefGoogle Scholar
  34. 34.
    Cole, S.R., Ma, X.X., Zhang, X.R., Xia, Y.: Electron transfer dissociation (ETD) of peptides containing intrachain disulfide bonds. J. Am. Soc. Mass Spectrom. 23, 310–320 (2012)CrossRefGoogle Scholar
  35. 35.
    Tan, L., Durand, K.L., Ma, X.X., Xia, Y.: Radical cascades in electron transfer dissociation (ETD) - implications for characterizing peptide disulfide regioisomers. Analyst. 138, 6759–6765 (2013)CrossRefGoogle Scholar
  36. 36.
    Mentinova, M., Han, H.L., McLuckey, S.A.: Dissociation of disulfide-intact somatostatin ions: the roles of ion type and dissociation method. Rapid Commun. Mass Spectrom. 23, 2647–2655 (2009)CrossRefGoogle Scholar
  37. 37.
    Chrisman, P.A., Pitteri, S.J., Hogan, J.M., McLuckey, S.A.: SO2- electron transfer ion/ion reactions with disulfide linked polypeptide ions. J. Am. Soc. Mass Spectrom. 16, 1020–1030 (2005)CrossRefGoogle Scholar
  38. 38.
    Ganisl, B., Breuker, K.: Does electron capture dissociation cleave protein disulfide bonds? Chemistryopen. 1, 260–268 (2012)CrossRefGoogle Scholar
  39. 39.
    Parcher, J.F., Wang, M., Chittiboyina, A.G., Khan, I.A.: In-source collision-induced dissociation (IS-CID): applications, issues and structure elucidation with single-stage mass analyzers. Drug Test Anal. 10, 28–36 (2018)CrossRefGoogle Scholar
  40. 40.
    Brodbelt, J.S.: Ion activation methods for peptides and proteins. Anal. Chem. 88, 30–51 (2016)CrossRefGoogle Scholar
  41. 41.
    Dongre, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996)CrossRefGoogle Scholar
  42. 42.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Special feature: commentary - mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000)CrossRefGoogle Scholar
  43. 43.
    Clark, D.F., Go, E.P., Toumi, M.L., Desaire, H.: Collision induced dissociation products of disulfide-bonded peptides: ions result from the cleavage of more than one bond. J. Am. Soc. Mass Spectrom. 22, 492–498 (2011)CrossRefGoogle Scholar
  44. 44.
    Chen, J.Z., Shiyanov, P., Zhang, L.W., Schlager, J.J., Green-Church, K.B.: Top-down characterization of a native highly intralinked protein: concurrent cleavages of disulfide and protein backbone bonds. Anal. Chem. 82, 6079–6089 (2010)CrossRefGoogle Scholar
  45. 45.
    Mormann, M., Eble, J., Schwoeppe, C., Mesters, R.M., Berdel, W.E., Peter-Katalinic, J., Pohlentz, G.: Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation. Anal. Bioanal. Chem. 392, 831–838 (2008)CrossRefGoogle Scholar
  46. 46.
    Schnaible, V., Wefing, S., Resemann, A., Suckau, D., Bucker, A., Wolf-Kummeth, S., Hoffmann, D.: Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS. Anal. Chem. 74, 4980–4988 (2002)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Bioprocess Development, MRLMerck & Co., Inc.KenilworthUSA

Personalised recommendations