Advertisement

Free Radical–Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis

  • Inae Jang
  • Aeran Jeon
  • Suk Gyu Lim
  • Duk Ki Hong
  • Min Soo Kim
  • Jae Hyeong Jo
  • Sang Tak Lee
  • Bongjin Moon
  • Han Bin OhEmail author
Research Article

Abstract

Free radical–initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved. Analysis of the resulting peptide fragments revealed the extensive production of a-, c-, x-, and z-type fragments (with some minor b- and y-type fragments), suggesting that radical-driven peptide fragmentation was the primary mechanism involved in the FRIPS MS of phosphopeptides. Results of this study clearly indicate that FRIPS MS is a promising tool for the characterization of post-translational modifications such as phosphorylation.

Graphical Abstract

Keywords

Free radical–initiated peptide sequencing (FRIPS) Radical-driven tandem mass spectrometry Phosphopeptides Phosphorylation Post-translational modifications (PTMs) 

Notes

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01056782 and 2018R1A6A1A03024940).

Supplementary material

13361_2018_2100_MOESM1_ESM.docx (566 kb)
ESM 1 (DOCX 566 kb)

References

  1. 1.
    Aebersold, R., Goodlett, D.R.: Mass-spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001)CrossRefGoogle Scholar
  2. 2.
    Wells, J.M., McLuckey, S.A.: Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 402, 148–185 (2005)CrossRefGoogle Scholar
  3. 3.
    Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods. 4, 709–712 (2007)CrossRefGoogle Scholar
  4. 4.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  5. 5.
    Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000)CrossRefGoogle Scholar
  6. 6.
    Zubarev, R.A.: Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom. Rev. 22, 57–77 (2003)CrossRefGoogle Scholar
  7. 7.
    Håkansson, K., Chalmers, M.J., Quinn, J.P., McFarland, M.A., Hendrickson, C.L., Marshall, A.G.: Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 75, 3256–3262 (2003)CrossRefGoogle Scholar
  8. 8.
    Tureček, F., Syrstad, E.A.: Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J. Am. Chem. Soc. 125, 3353–3369 (2003)CrossRefGoogle Scholar
  9. 9.
    Tureček, F.: N–Cα bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? J. Am. Chem. Soc. 125, 5954–5963 (2003)CrossRefGoogle Scholar
  10. 10.
    Leymarie, N., Costello, C.E., O’Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 8949–8958 (2003)CrossRefGoogle Scholar
  11. 11.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  12. 12.
    Cooper, H.J., Håkansson, K., Marshall, A.G.: The role of electron capture dissociation in biomoleuclar analysis. Mass Spectrom. Rev. 24, 201–222 (2005)CrossRefGoogle Scholar
  13. 13.
    Oh, H.B., McLafferty, F.W.: A variety of activation methods employed in “activated-ion” electron capture dissociation mass spectrometry: a test against bovine ubiquitin 7+ ions. Bull. Kor. Chem. Soc. 27, 389–394 (2006)CrossRefGoogle Scholar
  14. 14.
    Lee, S.Y., Chung, G.S., Kim, J.D., Oh, H.B.: Electron caputure dissociation mass spectrometry (ECD MS) of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type of product ions. Rapid Commun. Mass Spectrom. 20, 3167–3175 (2006)CrossRefGoogle Scholar
  15. 15.
    Wolff, J.J., Chi, L., Linhardt, R.J., Amster, I.J.: Electron detachment dissociation of glycosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 18, 234–244 (2007)CrossRefGoogle Scholar
  16. 16.
    Kweon, H.K., Håkansson, K.: Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation. J. Proteome Res. 7, 749–755 (2008)CrossRefGoogle Scholar
  17. 17.
    Lee, S.Y., Park, S.J., Ahn, S.H., Oh, H.B.: Characterization of permethylated β-cyclodextrin-peptide noncovalently bound complexes using electron capture dissociation mass spectrometry (ECD MS). Int. J. Mass Spectrom. 279, 47–52 (2009)CrossRefGoogle Scholar
  18. 18.
    Moore, B.N., Ly, T., Julian, R.R.: Radical conversion and migration in electron capture dissociation. J. Am. Chem. Soc. 133, 6997–7006 (2011)CrossRefGoogle Scholar
  19. 19.
    Mikhailov, V.A., Iniesta, J., Cooper, H.J.: Top-down mass analysis of protein tyrosine nitration: comparison of electron capture dissociation with “slow-heating” tandem mass spectrometry methods. Anal. Chem. 82, 7283–7292 (2010)CrossRefGoogle Scholar
  20. 20.
    Oh, H.B., Leach, F., Arungundram, S., Kanar, A.-M., Venot, A., Boons, G.-J., Amster, J.I.: Multivariate analysis of electron detachment dissociation (EDD) and infrared multiphoton dissociation mass spectra of heparin sulfate (HS) tetrasaccharides differing only in hexuronic acid stereochemistry. J. Am. Soc. Mass Spectrom. 22, 582–590 (2011)CrossRefGoogle Scholar
  21. 21.
    Fornelli, L., Damoc, E., Thomas, P.M., Kelleher, N.L., Aizikov, K., Denisov, E., Markarov, A., Tsybin, Y.O.: Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS. Mol. Cell. Proteomics. 11, 1758–1767 (2012)CrossRefGoogle Scholar
  22. 22.
    Hersberger, K.E., Håkansson, K.: Characterization of o-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative-ion electron capture dissociation. Anal. Chem. 84, 6370–6377 (2012)CrossRefGoogle Scholar
  23. 23.
    Huang, Y., Yu, X., Mao, Y., Costello, C.E., Zaia, J., Lin, C.: De novo sequencing of heparin sulfate oligosaccharides by electron-activated dissociation. Anal. Chem. 85, 11979–11986 (2013)CrossRefGoogle Scholar
  24. 24.
    Schennach, M., Schneeberger, E.-M., Breuker, K.: Unfolding and folding of the three-helix bundle protein KIX in the absence of solvent. J. Am. Soc. Mass Spectrom. 27, 1079–1088 (2016)CrossRefGoogle Scholar
  25. 25.
    Chu, I.K., Rodriguez, C.F., Lau, T.C., Hopkinson, A.C., Siu, K.W.M.: Molecular radical cations of oligopeptides. J. Phs. Chem. B. 104, 3393–3397 (2000)CrossRefGoogle Scholar
  26. 26.
    Barlow, C.K., McFadyen, W.D., O’Hair, R.A.J.: Formation of cationic peptide radicals by gas-phase redox reactions with trivalent chromium, manganese, iron, and cobalt complexes. J. Am. Chem. Soc. 127, 6109–6115 (2005)CrossRefGoogle Scholar
  27. 27.
    Laskin, J., Yang, Z., Chu, I.K.: Energetics and dynamics of electron transfer and proton transfer in dissociation of metalIII(salen)-peptide complexes in the gas phase. J. Am. Chem. Soc. 130, 3218–3230 (2008)CrossRefGoogle Scholar
  28. 28.
    Chu, I.K., Zhao, J., Xu, M., Siu, S.O., Hopkinson, A.C., Siu, K.W.M.: Are the radical centers in peptide radical cations mobile? The generation, tautomerism, and dissociation of isomeric alpha-carbon-centered triglycine radical cations in the gas phase. J. Am. Chem. Soc. 130, 7862–7872 (2008)CrossRefGoogle Scholar
  29. 29.
    Hopkinson, A.C.: Radical cations of amino acids and peptides: structures and stabilities. Mass Spectrom. Rev. 28, 655–671 (2009)CrossRefGoogle Scholar
  30. 30.
    Chu, I.K., Laskin, J.: Formation of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes. Eur. J. Mass Spectrom. 17, 543–556 (2011)CrossRefGoogle Scholar
  31. 31.
    Xu, M.J., Song, T., Quan, Q.A., Hao, Q.A., Fang, D.C., Siu, C.K., Chu, I.K.: Effect of the N-terminal basic residue on facile Cα–C bond cleavages of aromatic-containing peptide radical cations. Phys. Chem. Chem. Phys. 13, 5888–5896 (2011)CrossRefGoogle Scholar
  32. 32.
    Ly, T., Julian, R.R.: Tracking radical migration in large hydrogen deficient peptides with covalent labels: facile movement does not equal indiscriminate fragmentation. J. Am. Soc. Mass Spectrom. 20, 1148–1158 (2009)CrossRefGoogle Scholar
  33. 33.
    Ly, T., Julian, R.R.: Elucidating the tertiary structure of protein ions in vacuo with site specific photoinitiated radical reactions. J. Am. Chem. Soc. 132, 8602–8609 (2010)CrossRefGoogle Scholar
  34. 34.
    Antoine, R., Joly, L., Tabarin, T., Broyer, M., Dugourd, P., Lemoine, J.: Photoinduced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 21, 265–268 (2007)CrossRefGoogle Scholar
  35. 35.
    Brunet, C., Antoine, R., Allouche, A.R., Dugourd, P., Canon, F., Giuliani, A., Nahon, L.: Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radicalcontaining peptides. J. Phys. Chem. A. 115, 8933–8939 (2011)CrossRefGoogle Scholar
  36. 36.
    Masterson, D.S., Yin, H., Chacon, A., Hachey, D.L., Norris, J.L., Porter, N.A.: Lysine peroxycarbamates: free radical-promoted peptide cleavage. J. Am. Chem. Soc. 126, 720–721 (2004)CrossRefGoogle Scholar
  37. 37.
    Hodyss, R., Cox, H.A., Beauchamp, J.L.: Bioconjugates for tunable peptide fragmentation: free radical initiated peptide sequencing (FRIPS). J. Am. Chem. Soc. 127, 12436–12437 (2005)CrossRefGoogle Scholar
  38. 38.
    Thomas, D.A., Sohn, C.H., Gao, J., Beauchamp, J.L.: Hydrogen bonding constrains free radical reaction dynamics at serine and threonine residues in peptides. J. Phys. Chem. 118, 8380–8392 (2014)CrossRefGoogle Scholar
  39. 39.
    Sohn, C.H., Gao, J., Thomas, D.A., Kim, T.Y., Goddard III, W.A., Beauchamp, J.L.: Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry. Chem. Sci. 6, 4550–4460 (2015)CrossRefGoogle Scholar
  40. 40.
    Sun, Q., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)CrossRefGoogle Scholar
  41. 41.
    Siu, C.K., Zhao, J., Laskin, J., Chu, C.K., Hopkinson, A.C., Siu, K.W.M.: Kinetics for tautomerization and dissociations of triglycine radical cations. J. Am. Soc. Mass Spectrom. 20, 996–1005 (2009)CrossRefGoogle Scholar
  42. 42.
    Lee, M., Kang, M., Moon, B., Oh, H.B.: Gas phase peptide sequencing by TEMPO mediated radical generation. Analyst. 134, 1706–1712 (2009)CrossRefGoogle Scholar
  43. 43.
    Lee, M.H., Lee, Y.J., Kang, M.H., Park, H.Y., Seong, Y.M., Sung, B.J., Moon, B.J., Oh, H.B.: Disulfide bond cleavage by TEMPO-free radical initiated peptide sequencing mass spectrometry. J. Mass Spectrom. 46, 830–839 (2011)CrossRefGoogle Scholar
  44. 44.
    Lee, J.H., Park, H.Y., Kwon, H.S., Kwon, K.M., Jeon, A.R., Kim, H.I., Sung, B.J., Moon, B.J., Oh, H.B.: One-step peptide backbone fragmentations in negative ion free radical initiated peptide sequencing mass spectrometry. Anal. Chem. 85, 7044–7051 (2013)CrossRefGoogle Scholar
  45. 45.
    Marshall, D.L., Hansen, C.S., Trevitt, A.J., Oh, H.B., Blanksby, S.J.: Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys. Chem. Chem. Phys. 16, 4871–4879 (2014)CrossRefGoogle Scholar
  46. 46.
    Oh, H.B., Moon, M.J.: Radical-driven peptide backbone dissociation tandem mass spectrometry. Mass Spectrom. Rev. 34, 116–132 (2015)CrossRefGoogle Scholar
  47. 47.
    Jeon, A.R., Yun, K.N., Lee, J.H., Moon, B.J., Oh, H.B.: Guanidination of lysine residue improves the sensitivity and interpretation of free radical initiated peptide sequencing (FRIPS) mass spectrometry results. Int. J. Mass Spectrom. 390, 110–117 (2015)CrossRefGoogle Scholar
  48. 48.
    Nam, J.J., Kwon, H.S., Jang, I.A., Jeon, A.R., Moon, J.K., Lee, S.Y., Kang, D.J., Han, S.Y., Moon, B.J., Oh, H.B.: Bromine isotopic signature facilitates de novo sequencing of peptides in free radical initiated peptide seqeuncing (FRIPS) mass spectrometry. J. Mass Spectrom. 50, 378–387 (2015)CrossRefGoogle Scholar
  49. 49.
    Lee, C.S., Jang, I.A., Hwangbo, S., Moon, B.J., Oh, H.B.: Side chain cleavage in TEMPO-assisted free radical initiated peptide sequencing (FRIPS): amino acid composition information. Bull. Kor. Chem. Soc. 36, 810–814 (2015)Google Scholar
  50. 50.
    Jang, I.A., Lee, S.Y., Hwangbo, S., Lee, H.K., Kim, H.I., Kang, D.J., Moon, B.J., Oh, H.B.: TEMPO-assisted free radical initiated peptide sequencing mass spectrometry (FRIPS MS) in Q-TOF and orbitrap mass spectrometers: single-step peptide backbone dissociations. J. Am. Soc. Mass Spectrom. 28, 154–163 (2017)CrossRefGoogle Scholar
  51. 51.
    Ihling, C., Falvo, F., Kratochvil, I., Sinz, A., Schäfer, M.: Dissociation behavior of a bifunctional TEMPO-active ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry. J. Mass Spectrom. 50, 396–406 (2015)CrossRefGoogle Scholar
  52. 52.
    DeGraan-Webber, N., Zhang, J., Reilly, J.P.: Distinguishing aspartic and isoaspartic acids in peptides by several mass spectrometric fragmentation methods. J. Am. Soc. Mass Spectrom. 27, 2041–2053 (2016)CrossRefGoogle Scholar
  53. 53.
    Hage, C., Ihling, C.H., Götze, M., Schäfer, M., Sinz, A.: Dissociation behavior of a TEMPO-active ester cross-linker for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) in negative ESIMS. J. Am. Soc. Mass Spectrom. 28, 56–68 (2017)CrossRefGoogle Scholar
  54. 54.
    Iacobucci, C., Hage, C., Schäfer, M., Sinz, A.: A novel MS-cleavable azo cross-linker for peptide structure analysis by free radical initiated peptide sequencing (FRIPS). J. Am. Soc. Mass Spectrom. 28, 2039–2053 (2017)CrossRefGoogle Scholar
  55. 55.
    Iacobucci, C., Schäfer, M., Sinz, A.: Free radical-initiated peptide sequencing (FRIPS)-based cross-linkers for improved peptide and protein structure analysis. Mass Spectrom. Rev. (2018).  https://doi.org/10.1002/mas.21568
  56. 56.
    DeGnore, J.P., Qin, J.: Fragmentation of phosphopeptides in an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 1175–1188 (1998)CrossRefGoogle Scholar
  57. 57.
    Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F., Zubarev, R.A.: Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–1800 (2000)CrossRefGoogle Scholar
  58. 58.
    Shi, S.D.H., Helming, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W.: Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 73, 19–22 (2001)CrossRefGoogle Scholar
  59. 59.
    Moyer, S.C., Cotter, R.J., Woods, A.S.: Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 274–283 (2002)CrossRefGoogle Scholar
  60. 60.
    Park, S., Ahn, W.K., Lee, S., Han, S.Y., Rhee, B.K., Oh, H.B.: Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. Rapid Commun. Mass Spectrom. 23, 3609–3620 (2009)CrossRefGoogle Scholar
  61. 61.
    Chu, I.K., Siu, C.-K., Lau, J.K.C., Tang, W.K., Mu, X., Lai, C.K., Guo, X., Wang, X., Li, N., Yao, Z., Xia, Y., Kong, X., Oh, H.B., Ryzhov, V., Tureček, F., Hopkinson, A.C., Siu, M.: Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 390, 24–27 (2015)CrossRefGoogle Scholar
  62. 62.
    Borotto, N.B., Ileka, K.M., Tom, C.A.T.M., Martin, B.R., Håkansson, K.: Free radical initiated peptide sequencing for direct site localization of sulfation and phosphorylation with negative ion mode mass spectrometry. Anal. Chem. 90, 9682–9686 (2018)CrossRefGoogle Scholar
  63. 63.
    Cooper, H.J., Hudgins, R.R., Håkansson, K.: Characterization of amino acid side chain losses in electron capture dissociation. J. Am. Soc. Mass Spectrom. 13, 241–249 (2002)CrossRefGoogle Scholar
  64. 64.
    Harrison, A.G.: The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 16, 201–217 (1997)CrossRefGoogle Scholar
  65. 65.
    Dongre, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996)CrossRefGoogle Scholar
  66. 66.
    Jeon, A., Lee, J.H., Kwon, H.S., Park, H.S., Moon, B.J., Oh, H.B.: Charge-directed peptide backbone dissociation of o-TEMPO-Bz-C(O)- peptides. Mass Spectrom. Lett. 4, 71–74 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistrySogang UniversitySeoulRepublic of Korea
  2. 2.Seoul Science High SchoolSeoulRepublic of Korea
  3. 3.Seoul National UniversitySeoulRepublic of Korea
  4. 4.Korea UniversitySeoulRepublic of Korea
  5. 5.Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations