Development of a Post-Column Liquid Chromatographic Chiral Addition Method for the Separation and Resolution of Common Mammalian Monosaccharides

  • Zachary Wooke
  • Gabe Nagy
  • Lauren F. Barnes
  • Nicola L. B. PohlEmail author
Research Article


The first solely MS-based methodology for the identification and resolution of the ten common mammalian monosaccharides is presented. Based on Cooks’ fixed ligand kinetic method, this technique is effective on multiple classes of monosaccharides and includes the first example of two fixed ligand combinations used in a single multiplexed experiment. Subsequently, a post-HPLC chiral addition method is used in conjunction with this newly developed MS methodology for the separation and identification of mixtures of common neutral mammalian monosaccharides. This proposed technique is able to overcome a limitation of present carbohydrate analysis methods, namely the simultaneous isomeric resolution of multiple monosaccharides in a mixture.

Graphical Abstract


Carbohydrates Monosaccharides Fixed ligand kinetic method 



We would like to acknowledge the Joan and Marvin Carmack Chair funds for partial support of this work. G.N. is thankful for a Carmack Fellowship and N.P. for the Edward, Frances, and Shirley B. Daniels Fellow position at the Radcliffe Institute for Advanced Study at Harvard University. Z. W. would like to thank the IU-LBMS for the use of their instruments and helpful discussion from Dr. Trinidad and Dr. Grassmyer.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

13361_2018_2095_MOESM1_ESM.pdf (696 kb)
ESM 1 (PDF 696 kb)


  1. 1.
    Werz, D.B., Ranzinger, R., Herget, S., Adibekian, A., von der Lieth, C.-W., Seeberger, P.H.: Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem. Biol. 2, 685–691 (2007)CrossRefGoogle Scholar
  2. 2.
    Augusti, D.V., Carazza, F., Augusti, R., Tao, W.A., Cooks, R.G.: Quantitative chiral analysis of sugars by electrospray ionization tandem mass spectrometry using modified amino acids as chiral reference compounds. Anal. Chem. 74, 3458–3462 (2002)CrossRefGoogle Scholar
  3. 3.
    Li, G., Huang, Z., Fu, C., Xu, P., Liu, Y., Zhao, Y.-f.: L-Valine assisted distinction between the stereo-isomers of D-hexoses by positive ion ESI tandem mass spectrometry. J. Mass Spectrom. 45, 643–650 (2010)Google Scholar
  4. 4.
    Xia, B., Zhou, Y., Liu, X., Xiao, J., Liu, Q., Gu, Y., Ding, L.: Use of electrospray ionization ion-trap tandem mass spectrometry and principal component analysis to directly distinguish monosaccharides. Rapid Commun. Mass Spectrom. 26, 1259–1264 (2012)CrossRefGoogle Scholar
  5. 5.
    Gaucher, S.P., Leary, J.A.: Stereochemical differentiation of mannose, glucose, galactose, and talose using zinc(II) diethylenetriamine and ESI-ion trap mass spectrometry. Anal. Chem. 70, 3009–3014 (1998)CrossRefGoogle Scholar
  6. 6.
    Mutenda, K.E., Matthiesen, R.: Analysis of carbohydrates by mass spectrometry. In: Matthiesen, R. (ed.) . Humana Press, Totowa (2007)Google Scholar
  7. 7.
    Both, P., Green, A.P., Gray, C.J., Šardzík, R., Voglmeir, J., FontanaC, A.M., Rejzek, M., Richardson, D., Field, R.A., Widmalm, G., Flitsch, S.L., Eyers, C.E.: Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014)CrossRefGoogle Scholar
  8. 8.
    Laine, R.A.: Invited commentary: a calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 4, 759–767 (1994)CrossRefGoogle Scholar
  9. 9.
    National Research Council (US) Committee on Assessing the Importance and Impact of Glycomics and Glycosciences: Transforming Glycoscience: A Roadmap for The Future. National Academies Press, Washington, DC (2012)Google Scholar
  10. 10.
    Duus, J.Ø., Gotfredsen, C.H., Bock, K.: Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev. 100, 4589–4614 (2000)CrossRefGoogle Scholar
  11. 11.
    Ruiz-Matute, A.I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M.L., Martínez-Castro, I.: Derivatization of carbohydrates for GC and GC–MS analyses. J. Chromatogr. B. 879, 1226–1240 (2011)CrossRefGoogle Scholar
  12. 12.
    Trim, P.J., Hopwood, J.J., Snel, M.F.: Butanolysis derivatization: improved sensitivity in LC-MS/MS quantitation of heparan sulfate in urine from mucopolysaccharidosis patients. Anal. Chem. 87, 9243–9250 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, Y.-H., Avula, B., Fu, X., Wang, M., Khan, I.A.: Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by a UPLC-UV/MS method. Planta Med. 78, 834–837 (2012)CrossRefGoogle Scholar
  14. 14.
    James, T.D., Samankumara Sandanayake, K.R.A., Shinkai, S.: Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature. 374, 345 (1995)CrossRefGoogle Scholar
  15. 15.
    Xu, G., Amicucci, M.J., Cheng, Z., Galermo, A.G., Lebrilla, C.B.: Revisiting monosaccharide analysis – quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst. 143, 200–207 (2018)CrossRefGoogle Scholar
  16. 16.
    Gaye, M.M., Nagy, G., Clemmer, D.E., Pohl, N.L.B.: Multidimensional analysis of 16 glucose isomers by ion mobility spectrometry. Anal. Chem. 88, 2335–2344 (2016)CrossRefGoogle Scholar
  17. 17.
    Nagy, G., Peng, T., Pohl, N.L.B.: General label-free mass spectrometry-based assay to identify glycosidase substrate competence. Anal. Chem. 88, 7183–7190 (2016)CrossRefGoogle Scholar
  18. 18.
    Nagy, G., Pohl, N.L.B.: Complete hexose isomer identification with mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 677–685 (2015)CrossRefGoogle Scholar
  19. 19.
    Nagy, G., Pohl, N.L.B.: Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal. Chem. 87, 4566–4571 (2015)CrossRefGoogle Scholar
  20. 20.
    Campbell, M.T., Chen, D., Glish, G.L.: Identifying the D-Pentoses using water adduction to Lithium cationized molecule. J. Am. Soc. Mass Spectrom. 28, 1420–1424 (2017)CrossRefGoogle Scholar
  21. 21.
    Campbell, M.T., Chen, D., Wallbillich, N.J., Glish, G.L.: Distinguishing biologically relevant hexoses by water adduction to the lithium-cationized molecule. Anal. Chem. 89, 10504–10510 (2017)CrossRefGoogle Scholar
  22. 22.
    Lopes, J.F., Gaspar, E.M.S.M.: Simultaneous chromatographic separation of enantiomers, anomers and structural isomers of some biologically relevant monosaccharides. J. Chromatogr. A. 1188, 34–42 (2008)CrossRefGoogle Scholar
  23. 23.
    Fouquet, T., Charles, L.: Distinction and quantitation of sugar isomers in ternary mixtures using the kinetic method. J. Am. Soc. Mass Spectrom. 21, 60–67 (2010)CrossRefGoogle Scholar
  24. 24.
    Fritz, J.S.: Principles and applications of ion-exclusion chromatography. J. Chromatogr. A. 546, 111–118 (1991)CrossRefGoogle Scholar
  25. 25.
    Horňák, K., Pernthaler, J.: A novel ion-exclusion chromatography–mass spectrometry method to measure concentrations and cycling rates of carbohydrates and amino sugars in freshwaters. J. Chromatogr. A. 1365, 115–123 (2014)CrossRefGoogle Scholar
  26. 26.
    Kang, P., Mechref, Y., Klouckova, I., Novotny, M.V.: Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19, 3421–3428 (2005)CrossRefGoogle Scholar
  27. 27.
    Wu, L., Cooks, R.G.: Chiral analysis using the kinetic method with optimized fixed ligands: applications to some antibiotics. Anal. Chem. 75, 678–684 (2003)CrossRefGoogle Scholar
  28. 28.
    Wu, L., Cooks, R.G.: Chiral and isomeric analysis by electrospray ionization and sonic spray ionization using the fixed-ligand kinetic method. Eur. J. Mass Spectrom. 11, 231–242 (2005)CrossRefGoogle Scholar
  29. 29.
    Wu, L., Lemr, K., Aggerholm, T., Cooks, R.G.: Recognition and quantification of binary and ternary mixtures of isomeric peptides by the kinetic method: metal ion and ligand effects on the dissociation of metal-bound complexes. J. Am. Soc. Mass Spectrom. 14, 152–160 (2003)CrossRefGoogle Scholar
  30. 30.
    Lee, M.K., Kumar Avvaru, P., Jin, D., Lee, Y.I.: Determination of enantiomeric compositions of DOPA by tandem mass spectrometry using the kinetic method with fixed ligands. Rapid Commun. Mass Spectrom. 22, 909–915 (2008)CrossRefGoogle Scholar
  31. 31.
    Hyyryläinen Anna, R.M., Pakarinen Jaana, M.H., Forró, E., Fülöp, F., Vainiotalo, P.: Chiral differentiation of some cyclic β-amino acids by kinetic and fixed ligand methods. J. Mass Spectrom. 45, 198–204 (2009)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeUSA

Personalised recommendations