Advertisement

LC-MS/MS-Based Separation and Quantification of Marfey’s Reagent Derivatized Proteinogenic Amino Acid dl-Stereoisomers

  • Navid J. Ayon
  • Amar Deep Sharma
  • William G. GutheilEmail author
Research Article

Abstract

d-Amino acids are important biological molecules. Improved analytical methods for their resolution and quantification remain of keen interest. In this study, we investigated the use of Marfey’s reagent (chiral) derivatization coupled with LC-MS/MS-based separation and detection of the resulting diastereomers for quantification of the 19 common l- and d-amino acids and glycine. Standard formic acid (pH 2)-based separations on reverse phase media were unable to separate all 19 amino acid dl pairs. In contrast, a water/acetonitrile/ammonium acetate (pH 6.5) solvent system allowed all 19 amino acid dl pairs to be chromatographically resolved on a 30 min gradient, with negative mode detection at pH 6.5 giving good sensitivity. Derivatization reaction rates between amino acids varied substantially, with overnight derivatization required for some amino acids. Chromatography at pH 6.5 combined with MS/MS quantification in negative mode demonstrated good linearity over a wide concentration range for all 20 amino acids. Matrix effects, assessed with an MRSA extract, were negligible. Marfey’s derivatized analytes were stable for 24 h at room temperature. This method was demonstrated by determining the levels of these analytes in mid-log phase MRSA extracts. This approach provides for the chromatographic resolution and MS/MS-based quantification of all 20 common l- and d-amino acids in complex matrices.

Graphical Abstract

Keywords

Amino acid Marfey’s reagent Chiral separation LC-MS/MS 

Notes

Acknowledgments

The authors acknowledge support by grants from National Institute of Health (R21-AI121903 and R15-GM126502) to WGG.

Supplementary material

13361_2018_2093_MOESM1_ESM.docx (6.7 mb)
ESM 1 (DOCX 6.71 mb)

References

  1. 1.
    Genchi, G.: An overview on d-amino acids. Amino Acids. 49, 1521–1533 (2017)CrossRefGoogle Scholar
  2. 2.
    Hashimoto, A., Nishikawa, T., Hayashi, T., Fujii, N., Harada, K., Oka, T., Takahashi, K.: The presence of free d-serine in rat brain. FEBS Lett. 296, 33–36 (1992)CrossRefGoogle Scholar
  3. 3.
    Schell, M.J., Brady Jr., R.O., Molliver, M.E., Snyder, S.H.: d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 17, 1604–1615 (1997)CrossRefGoogle Scholar
  4. 4.
    Mothet, J.P., Parent, A.T., Wolosker, H., Brady Jr., R.O., Linden, D.J., Ferris, C.D., Rogawski, M.A., Snyder, S.H.: d-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. U. S. A. 97, 4926–4931 (2000)CrossRefGoogle Scholar
  5. 5.
    Madeira, C., Lourenco, M.V., Vargas-Lopes, C., Suemoto, C.K., Brandao, C.O., Reis, T., Leite, R.E., Laks, J., Jacob-Filho, W., Pasqualucci, C.A., Grinberg, L.T., Ferreira, S.T., Panizzutti, R.: d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry. 5, e561 (2015)CrossRefGoogle Scholar
  6. 6.
    Li, Z., Xing, Y., Guo, X., Cui, Y.: Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: application to a study on the associations of d-amino acid concentration changes and Alzheimer's disease. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1058, 40–46 (2017)CrossRefGoogle Scholar
  7. 7.
    Paul, P., de Belleroche, J.: The role of d-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Front. Synaptic Neurosci. 6, 10 (2014)CrossRefGoogle Scholar
  8. 8.
    Kantrowitz, J.T., Epstein, M.L., Beggel, O., Rohrig, S., Lehrfeld, J.M., Revheim, N., Lehrfeld, N.P., Reep, J., Parker, E., Silipo, G., Ahissar, M., Javitt, D.C.: Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist d-serine. Brain J. Neurol. 139, 3281–3295 (2016)CrossRefGoogle Scholar
  9. 9.
    Hashimoto, K., Fukushima, T., Shimizu, E., Komatsu, N., Watanabe, H., Shinoda, N., Nakazato, M., Kumakiri, C., Okada, S., Hasegawa, H., Imai, K., Iyo, M.: Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry. 60, 572–576 (2003)CrossRefGoogle Scholar
  10. 10.
    Kiriyama, Y., Nochi, H.: d-amino acids in the nervous and endocrine systems. Scientifica (Cairo). 2016, 6494621 (2016)Google Scholar
  11. 11.
    Weatherly, C.A., Du, S., Parpia, C., Santos, P.T., Hartman, A.L., Armstrong, D.W.: d-amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS Chem. Neurosci. 8, 1251–1261 (2017)CrossRefGoogle Scholar
  12. 12.
    Kimura, T., Hamase, K., Miyoshi, Y., Yamamoto, R., Yasuda, K., Mita, M., Rakugi, H., Hayashi, T., Isaka, Y.: Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 6, 26137 (2016)CrossRefGoogle Scholar
  13. 13.
    Morikawa, A., Hamase, K., Miyoshi, Y., Koyanagi, S., Ohdo, S., Zaitsu, K.: Circadian changes of d-alanine and related compounds in rats and the effect of restricted feeding on their amounts. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 875, 168–173 (2008)CrossRefGoogle Scholar
  14. 14.
    Ariyoshi, M., Katane, M., Hamase, K., Miyoshi, Y., Nakane, M., Hoshino, A., Okawa, Y., Mita, Y., Kaimoto, S., Uchihashi, M., Fukai, K., Ono, K., Tateishi, S., Hato, D., Yamanaka, R., Honda, S., Fushimura, Y., Iwai-Kanai, E., Ishihara, N., Mita, M., Homma, H., Matoba, S.: d-Glutamate is metabolized in the heart mitochondria. Sci. Rep. 7, 43911 (2017)CrossRefGoogle Scholar
  15. 15.
    Schleifer, K.H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxinomic implications. Bacteriol. Rev. 36, 407–477 (1972)Google Scholar
  16. 16.
    Vollmer, W., Blanot, D., de Pedro, M.A.: Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008)CrossRefGoogle Scholar
  17. 17.
    Bugg, T.D., Braddick, D., Dowson, C.G., Roper, D.I.: Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol. 29, 167–173 (2011)CrossRefGoogle Scholar
  18. 18.
    Radkov, A.D., Moe, L.A.: Bacterial synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 98, 5363–5374 (2014)CrossRefGoogle Scholar
  19. 19.
    Cava, F., Lam, H., de Pedro, M.A., Waldor, M.K.: Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell. Mol. Life Sci. 68, 817–831 (2011)CrossRefGoogle Scholar
  20. 20.
    Miyamoto, T., Katane, M., Saitoh, Y., Sekine, M., Homma, H.: Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis. Amino Acids. 49, 1885–1894 (2017)CrossRefGoogle Scholar
  21. 21.
    Alvarez, L., Aliashkevich, A., de Pedro, M.A., Cava, F.: Bacterial secretion of d-arginine controls environmental microbial biodiversity. ISME J. 12, 438–450 (2018)CrossRefGoogle Scholar
  22. 22.
    Demarchi, B., Williams, M.G., Milner, N., Russell, N., Bailey, G., Penkman, K.: Amino acid racemization dating of marine shells: a mound of possibilities. Quat. Int. 239, 114–124 (2011)CrossRefGoogle Scholar
  23. 23.
    Elsila, J.E., Aponte, J.C., Blackmond, D.G., Burton, A.S., Dworkin, J.P., Glavin, D.P.: Meteoritic amino acids: diversity in compositions reflects parent body histories. ACS Centr. Sci. 2, 370–379 (2016)CrossRefGoogle Scholar
  24. 24.
    Bhushan, R., Bruckner, H.: Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids. 27, 231–247 (2004)CrossRefGoogle Scholar
  25. 25.
    Ilisz, I., Berkecz, R., Peter, A.: Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: a review. J. Pharm. Biomed. Anal. 47, 1–15 (2008)CrossRefGoogle Scholar
  26. 26.
    Szoko, E., Vincze, I., Tabi, T.: Chiral separations for d-amino acid analysis in biological samples. J. Pharm. Biomed. Anal. 130, 100–109 (2016)CrossRefGoogle Scholar
  27. 27.
    Piovesana, S., Samperi, R., Laganà, A., Bella, M.: Determination of enantioselectivity and enantiomeric excess by mass spectrometry in the absence of chiral chromatographic separation: an overview. Chem. Eur. J. 19, 11478–11494 (2013)CrossRefGoogle Scholar
  28. 28.
    Schurig, V.: Gas chromatographic enantioseparation of derivatized alpha-amino acids on chiral stationary phases—past and present. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 3122–3140 (2011)CrossRefGoogle Scholar
  29. 29.
    Visser, W.F., Verhoeven-Duif, N.M., Ophoff, R., Bakker, S., Klomp, L.W., Berger, R., de Koning, T.J.: A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J. Chromatogr. A. 1218, 7130–7136 (2011)CrossRefGoogle Scholar
  30. 30.
    Tao, W.A., Zhang, D., Nikolaev, E.N., Cooks, R.G.: Copper(II)-assisted enantiomeric analysis of d,l-amino acids using the kinetic method: chiral recognition and quantification in the gas phase. J. Am. Chem. Soc. 122, 10598–10609 (2000)CrossRefGoogle Scholar
  31. 31.
    Marfey, P.: Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsb. Res. Commun. 49, 591–596 (1984)CrossRefGoogle Scholar
  32. 32.
    Bhushan, R., Bruckner, H.: Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 3148–3161 (2011)CrossRefGoogle Scholar
  33. 33.
    Jamindar, D., Gutheil, W.G.: A liquid chromatography-tandem mass spectrometry assay for Marfey’s derivatives of l-Ala, d-Ala, and d-Ala-d-Ala: application to the in vivo confirmation of alanine racemase as the target of cycloserine in Escherichia coli. Anal. Biochem. 396, 1–7 (2010)CrossRefGoogle Scholar
  34. 34.
    Vemula, H., Ayon, N.J., Gutheil, W.G.: Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus. Biochimie. 121, 72–78 (2016)CrossRefGoogle Scholar
  35. 35.
    Putty, S., Vemula, H., Bobba, S., Gutheil, W.G.: A liquid chromatography-tandem mass spectrometry assay for d-Ala-d-Lac: a key intermediate for vancomycin resistance in vancomycin-resistant enterococci. Anal. Biochem. 442, 166–171 (2013)CrossRefGoogle Scholar
  36. 36.
    Vemula, H., Ayon, N.J., Burton, A., Gutheil, W.G.: Antibiotic effects on methicillin-resistant Staphylococcus aureus cytoplasmic peptidoglycan intermediate levels and evidence for potential metabolite level regulatory loops. Antimicrob. Agents Chemother. 61, (2017)Google Scholar
  37. 37.
    Vemula, H., Kitase, Y., Ayon, N.J., Bonewald, L., Gutheil, W.G.: Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Anal. Biochem. 516, 75–85 (2017)CrossRefGoogle Scholar
  38. 38.
    Vemula, H., Bobba, S., Putty, S., Barbara, J.E., Gutheil, W.G.: Ion-pairing liquid chromatography-tandem mass spectrometry-based quantification of uridine diphosphate-linked intermediates in the Staphylococcus aureus cell wall biosynthesis pathway. Anal. Biochem. 465, 12–19 (2014)CrossRefGoogle Scholar
  39. 39.
    Benson, S. W.: The foundations of chemical kinetics. McGraw-Hill, New York (1960)Google Scholar
  40. 40.
    Putty, S., Rai, A., Jamindar, D., Pagano, P., Quinn, C.L., Mima, T., Schweizer, H.P., Gutheil, W.G.: Characterization of d-boroAla as a novel broad-spectrum antibacterial agent targeting d-Ala-d-Ala ligase. Chem. Biol. Drug Des. 78, 757–763 (2011)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Division of Pharmacology and Pharmaceutical Sciences, School of PharmacyUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations