Advertisement

Initial Benchmarking of the Liquid Sampling-Atmospheric Pressure Glow Discharge-Orbitrap System Against Traditional Atomic Mass Spectrometry Techniques for Nuclear Applications

  • Edward D. Hoegg
  • Benjamin T. Manard
  • E. Miller Wylie
  • K. J. Mathew
  • Chelsea F. Ottenfeld
  • R. Kenneth Marcus
Research Article

Abstract

The integration of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ion source with Orbitrap mass spectrometers has resulted in new opportunities in the field of isotope ratio mass spectrometry. In a field that has been dominated by thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) on quadrupole and scanning-mode sector field analyzer platforms for highly accurate and precise measurements, the LS-APGD-Orbitrap system offers a benchtop instrument capable of meeting the rigorous International Target Values for measurement uncertainty for uranium (U). In order to benchmark the LS-APGD-Orbitrap, a series of U certified reference materials with increasing 235U isotopic composition were analyzed. By using U samples ranging in enrichment from 1 to 80%, the ability of the system to measure isotope ratios over a wide range is demonstrated. This analysis represents the first time that the LS-APGD-Orbitrap system has been used to analyze highly enriched U samples, allowing for the measurement of each of the U isotopes, including 234U and 236U-related species, which had not been achieved previously. Ultimately, the LS-APGD-Orbitrap system was able to measure CRM U-800 (assayed as 235U / 238U = 4.265622) as 4.266922, with a combined uncertainty, (uc), of 0.040%. These results are compared to those obtained using traditional elemental mass spectrometers including TIMS and ICP-MS-based instruments. The effectiveness of the LS-APGD-Orbitrap MS system for measuring U isotopes shows excellent promise in nuclear forensics, safeguards, and other nuclear weapon-based applications.

Graphical Abstract

Keywords

Liquid sampling-atmospheric pressure glow discharge Orbitrap Isotope ratio mass spectrometry Uranium Nuclear forensics 

Notes

Acknowledgements

Efforts in the development of the LS-APGD microplasma ionization source have been supported by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-14-1-0010, to Clemson University. High Purity Standards (Charleston, SC, USA) is acknowledged for the donation of CRM 129a.

References

  1. 1.
    Moody, K.J., Grant, P.M., Hutcheon, I.D.: Nuclear Forensic Analysis. CRC Press, Boca Raton (2014)Google Scholar
  2. 2.
    Stanley, F.E., Stalcup, A.M., Spitz, H.B.: A brief introduction to analytical methods in nuclear forensics. J. Radioanal. Nucl. Chem. 295, 1385–1393 (2013)CrossRefGoogle Scholar
  3. 3.
    Kristo, M.J., Tumey, S.J.: The state of nuclear forensics. Nucl. Instrum. Meth. B. 294, 656–661 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhao, K., Penkin, M., Norman, C., Balsley, S., Maryer, K., Peerani, P., Pietri, C., Tapodi, S., Tsutaki, Y., Boella, M. Renha, G., Kuhn, E.: International Target Values 2010 for Measurement Uncertainties in Safeguarding Nuclear Materials. ESARDA Bulletin, 3–24 (2010)Google Scholar
  5. 5.
    Byerly, B.L., Stanley, F., Spencer, K., Colletti, L., Garduno, K., Kuhn, K., Lujan, E., Martinez, A., Porterfield, D., Rim, J., Schappert, M., Thomas, M., Townsend, L., Xu, N., Tandon, L.: Forensic investigation of plutonium metal: a case study of CRM 126. J. Radioanal. Nucl. Chem. 310, 623–632 (2016)CrossRefGoogle Scholar
  6. 6.
    Magara, M., Hanzawa, Y., Esaka, F., Miyamoto, Y., Yasuda, K., Watanabe, K., Usuda, S., Nishimura, H., Adachi, T.: Development of analytical techniques for ultra trace amounts of nuclear materials in environmental samples using ICP-MS for safeguards. Appl. Radiat. Isot. 53, 87–90 (2000)CrossRefGoogle Scholar
  7. 7.
    Qiao, J., Lagerkvist, P., Rodushkin, I., Salminen-Paatero, S., Roos, P., Lierhagen, S., Jensen, K.A., Engstrom, E., Lahaye, Y., Skipperud, L.: On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise. J. Radioanal. Nucl. Chem. 315, 565–580 (2018)CrossRefGoogle Scholar
  8. 8.
    Manard, B.T., Derrick Quarles, C., Wylie, E.M., Xu, N.: Laser ablation-inductively couple plasma-mass spectrometry/laser induced break down spectroscopy: a tandem technique for uranium particle characterization. J. Anal. At. Spectrom. 32, 1680–1687 (2017)CrossRefGoogle Scholar
  9. 9.
    Kappel, S., Boulyga, S.F., Dorta, L., Günther, D., Hattendorf, B., Koffler, D., Laaha, G., Leisch, F., Prohaska, T.: Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS. Anal. Bioanal. Chem. 405, 2943–2955 (2013)CrossRefGoogle Scholar
  10. 10.
    Kappel, S., Boulyga, S.F., Prohaska, T.: Direct uranium isotope ratio analysis of single micrometer-sized glass particles. J. Environ. Radioact. 113, 8–15 (2012)CrossRefGoogle Scholar
  11. 11.
    Erdmann, N., Betti, M., Stetzer, O., Tamborini, G., Kratz, J.V., Trautmann, N., van Geel, J.: Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry. Spectrochim. Acta B. 55, 1565–1575 (2000)CrossRefGoogle Scholar
  12. 12.
    Jakubowski, N., Feldmann, I., Stuewer, D.: Analytical improvement of pneumatic nebulization in ICP-MP by desolvation. Spectrochim. Acta B. 47, 107–118 (1992)CrossRefGoogle Scholar
  13. 13.
    Boulyga, S.F., Heumann, K.G.: Determination of extremely low U-236/U-238 isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J. Environ. Radioact. 88, 1–10 (2006)CrossRefGoogle Scholar
  14. 14.
    Park, R., Lim, S.H., Han, S.H., Lee, M.Y., Park, J., Lee, C.G., Song, K.: Improvement of measurement precisions for uranium isotopes at ultra trace levels by modification of the sample introduction system in MC-ICP-MS. Mass Spectrom. Lett. 7, 50–54 (2016)CrossRefGoogle Scholar
  15. 15.
    Hoegg, E.D., Barinaga, C.J., Hager, G.J., Hart, G.L., Koppenaal, D.W., Marcus, R.K.: Preliminary figures of merit for isotope ratio measurements: the liquid sampling-atmospheric pressure glow discharge microplasma ionization source coupled to an Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 27, 1393–1403 (2016)CrossRefGoogle Scholar
  16. 16.
    Hoegg, E.D., Barinaga, C.J., Hager, G.J., Hart, G.L., Koppenaal, D.W., Marcus, R.K.: Isotope ratio characteristics and sensitivity for uranium determinations using a liquid sampling-atmospheric pressure glow discharge ion source coupled to an Orbitrap mass analyzer. J. Anal. At. Spectrom. 31, 2355–2362 (2016)CrossRefGoogle Scholar
  17. 17.
    Hoegg, E.D., Marcus, R.K., Koppenaal, D.W., Irvahn, J., Hager, G.J., Hart, G.L.: Determination of uranium isotope ratios using a liquid sampling atmospheric pressure glow discharge/Orbitrap mass spectrometer system. Rapid Commun. Mass Spectrom. 31, 1534–1540 (2017)CrossRefGoogle Scholar
  18. 18.
    Hoegg, E.D., Marcus, R.K., Hager, G.J., Hart, G.L., Koppenaal, D.W.: Concomitant ion effects on isotope ratio measurements with liquid sampling-atmospheric pressure glow discharge ion source Orbitrap mass spectrometry. J. Anal. Atom. Spectrom. 33, 251–259 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhang, L.X., Marcus, R.K.: Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source. J. Anal. At. Spectrom. 31, 145–151 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, L.X., Manard, B.T., Powell, B.A., Marcus, R.K.: Preliminary assessment of potential for metal–ligand speciation in aqueous solution via the liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source: uranyl acetate. Anal. Chem. 87, 7218–7225 (2015)CrossRefGoogle Scholar
  21. 21.
    Manard, B.T., Gonzalez, J.J., Sarkar, A., Dong, M.R., Chirinos, J., Mao, X.L., Russo, R.E., Marcus, R.K.: Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: assessment of plasma characteristics. Spectrochim. Acta B. 94-95, 39–47 (2014)CrossRefGoogle Scholar
  22. 22.
    Marcus, R.K., Burdette, C.Q., Manard, B.T., Zhang, L.X.: Ambient desorption/ionization mass spectrometry using a liquid sampling-atmospheric glow discharge (LS-APGD) ionization source. Anal. Bioanal. Chem. 405, 8171–8184 (2013)CrossRefGoogle Scholar
  23. 23.
    Scigelova, M., Makarov, A.: Orbitrap mass analyzer—overview and applications in proteomics. Proteomics. 6(Suppl 2), 16–21 (2006)CrossRefGoogle Scholar
  24. 24.
    Eliuk, S., Makarov, A.: Evolution of Orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. 8, 61–80 (2015)CrossRefGoogle Scholar
  25. 25.
    Eiler, J., Cesar, J., Chimiak, L., Dallas, B., Grice, K., Griep-Raming, J., Juchelka, D., Kitchen, N., Lloyd, M., Makarov, A., Robins, R., Schwieters, J.: Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. Int. J. Mass Spectrom. 422, 126–142 (2017)CrossRefGoogle Scholar
  26. 26.
    Aggarwal, S.K.: Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Anal. Methods-UK. 8, 942–957 (2016)CrossRefGoogle Scholar
  27. 27.
    Mathew, K.J., Stanley, F.E., Thomas, M.R., Spencer, K.J., Colletti, L.P., Tandon, L.: Critical need for plutonium and uranium isotopic standards with lower uncertainties. Anal. Methods-UK. 8, 7289–7305 (2016)CrossRefGoogle Scholar
  28. 28.
    Mathew, K.J., O'Connor, G., Hasozbek, A., Kraiem, M.: Total evaporation method for uranium isotope-amount ratio measurements. J. Anal. At. Spectrom. 28, 866–876 (2013)CrossRefGoogle Scholar
  29. 29.
    Park, J.H., Jeong, K.: Experimental evaluation of the detection methods of thermal ionization mass spectrometry for isotopic analysis of ultra-trace level uranium. Microchem. J. 137, 334–341 (2018)CrossRefGoogle Scholar
  30. 30.
    Boulyga, S.F., Koepf, A., Konegger-Kappel, S., Macsik, Z., Stadelmann, G.: Uranium isotope analysis by MC-ICP-MS in sub-ng sized samples. J. Anal. At. Spectrom. 31, 2272–2284 (2016)CrossRefGoogle Scholar
  31. 31.
    Marcus, R.K., Davis, W.C.: An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Anal. Chem. 73, 2903–2910 (2001)CrossRefGoogle Scholar
  32. 32.
    Marcus, R.K., Manard, B.T., Quarles, C.D.: Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. J. Anal. At. Spectrom. 32, 704–716 (2017)CrossRefGoogle Scholar
  33. 33.
    Marcus, R.K., Quarles, C.D., Barinaga, C.J., Carado, A.J., Koppenaal, D.W.: Liquid sampling-atmospheric pressure glow discharge ionization source for elemental mass spectrometry. Anal. Chem. 83, 2425–2429 (2011)CrossRefGoogle Scholar
  34. 34.
    Zhang, L.X., Manard, B.T., Kappel, S.K., Marcus, R.K.: Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry. Anal. Bioanal. Chem. 406, 7497–7509 (2014)CrossRefGoogle Scholar
  35. 35.
    International, A:. ASTM C1672-17, Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer. ASTM International, West Conshohocken, PA (2017). http://www.astm.org,  https://doi.org/10.1520/C1672-17
  36. 36.
    Mathew, K., Mason, P., Voeks, A., Narayanan, U.: Uranium isotope abundance ratios in natural uranium metal certified reference material 112-A. Int. J. Mass Spectrom. 315, 8–14 (2012)CrossRefGoogle Scholar
  37. 37.
    Francis, A.J., Halada, G., Gillow, J., Clayton, C.: Mechanisms of Radionuclide-Hyroxycarboxylic Acid Interactions for Decontamination of Metallic Surfaces (2002). Final Report, Brookhaven National Laboratory.  https://doi.org/10.2172/794072

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Biosystems Research ComplexClemson UniversityClemsonUSA
  2. 2.Chemistry Division – Actinide Analytical Chemistry (C-AAC)Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Nuclear Analytical Chemistry and Isotopics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations