Advertisement

Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator

  • Michael Nshanian
  • Carter Lantz
  • Piriya Wongkongkathep
  • Thomas Schrader
  • Frank-Gerrit Klärner
  • Anika Blümke
  • Clément Despres
  • Michael Ehrmann
  • Caroline Smet-Nocca
  • Gal Bitan
  • Joseph A. Loo
Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article

Abstract

Native top-down mass spectrometry (MS) and ion mobility spectrometry (IMS) were applied to characterize the interaction of a molecular tweezer assembly modulator, CLR01, with tau, a protein believed to be involved in a number of neurodegenerative disorders, including Alzheimer’s disease. The tweezer CLR01 has been shown to inhibit aggregation of amyloidogenic polypeptides without toxic side effects. ESI-MS spectra for different forms of tau protein (full-length, fragments, phosphorylated, etc.) in the presence of CLR01 indicate a primary binding stoichiometry of 1:1. The relatively high charging of the protein measured from non-denaturing solutions is typical of intrinsically disordered proteins, such as tau. Top-down mass spectrometry using electron capture dissociation (ECD) is a tool used to determine not only the sites of post-translational modifications but also the binding site(s) of non-covalent interacting ligands to biomolecules. The intact protein and the protein-modulator complex were subjected to ECD-MS to obtain sequence information, map phosphorylation sites, and pinpoint the sites of inhibitor binding. The ESI-MS study of intact tau proteins indicates that top-down MS is amenable to the study of various tau isoforms and their post-translational modifications (PTMs). The ECD-MS data point to a CLR01 binding site in the microtubule-binding region of tau, spanning residues K294-K331, which includes a six-residue nucleating segment PHF6 (VQIVYK) implicated in aggregation. Furthermore, ion mobility experiments on the tau fragment in the presence of CLR01 and phosphorylated tau reveal a shift towards a more compact structure. The mass spectrometry study suggests a picture for the molecular mechanism of the modulation of protein-protein interactions in tau by CLR01.

Graphical Abstract

Keywords

Electrospray ionization Electron capture dissociation Native mass spectrometry Top-down mass spectrometry Tau Tweezer 

Notes

Acknowledgments

The authors would like to thank Dr. Hong Nguyen (UCLA) for help with data processing and Dr. Jing Di (UCLA) for providing the tau samples and sample information.

Funding Information

Support from the US National Institutes of Health (R01GM103479, S10RR028893, S10OD018504 to J.A.L.; RF1AG054000, R01AG050721 to G.B.), the Development and Promotion of Science and Technology Talents Project (DPST) and Royal Thai Government (to P.W.), the Rachadapisek Sompot Fund, Chulalongkorn University (to P.W.), and the US Department of Energy (DE-FC02-02ER63421 to J.A.L.) are gratefully acknowledged. A.B. and M.E. were supported by CRC1093 and EH 100/19-1 from Deutsche Forschungsgemeinschaft.

Supplementary material

13361_2018_2027_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1.58 mb)

References

  1. 1.
    Brion, J.P., Flament-Durand, J., Dustin, P.: Alzheimer’s disease and tau proteins. Lancet. 328, 1098 (1986)CrossRefGoogle Scholar
  2. 2.
    Drubin, D.G., Kirschner, M.W.: Tau protein function in living cells. J. Cell Biol. 103, 2739–2746 (1986)CrossRefPubMedGoogle Scholar
  3. 3.
    Goedert, M., Spillantini, M.G.: Pathogenesis of the tauopathies. J. Mol. Neurosci. 45, 425–431 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    Kirkitadze, M.D., Bitan, G., Teplow, D.B.: Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Klein, W.L., Krafft, G.A., Finch, C.E.: Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Tr. Neurosci. 24, 219–224 (2001)CrossRefGoogle Scholar
  6. 6.
    Martin, L., Latypova, X., Terro, F.: Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem. Int. 58, 458–471 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    Spillantini, M.G., Goedert, M.: Tau pathology and neurodegeneration. Lancet Neuro. 12, 609–622 (2013)CrossRefGoogle Scholar
  8. 8.
    Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D., Crowther, R.A.: Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 3, 519–526 (1989)CrossRefPubMedGoogle Scholar
  9. 9.
    Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M., Donlon, T.A.: Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol. Brain Res. 1, 271–280 (1986)CrossRefGoogle Scholar
  10. 10.
    Elbaum-Garfinkle, S., Rhoades, E.: Identification of an aggregation-prone structure of tau. J. Am. Chem. Soc. 134, 16607–16613 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goedert, M., Wischik, C.M., Crowther, R.A., Walker, J.E., Klug, A.: Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. U. S. A. 85, 4051–4055 (1988)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wischik, C.M., Novak, M., Edwards, P.C., Klug, A., Tichelaar, W., Crowther, R.A.: Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 85, 4884–4888 (1988)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berriman, J., Serpell, L.C., Oberg, K.A., Fink, A.L., Goedert, M., Crowther, R.A.: Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-β structure. Proc. Natl. Acad. Sci. U. S. A. 100, 9034–9038 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Von Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E.M., Mandelkow, E.: Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J. Biol. Chem. 276, 48165–48174 (2001)CrossRefGoogle Scholar
  15. 15.
    Avila, J.: Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett. 580, 2922–2927 (2006)CrossRefPubMedGoogle Scholar
  16. 16.
    Mandelkow, E.M., Mandelkow, E.: Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Biol. 3, 1–25 (2011)Google Scholar
  17. 17.
    Iqbal, K., Liu, F., Gong, C.X.: Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    Arendt, T., Stieler, J., Strijkstra, A.M., Hut, R.A., Rüdiger, J., Van der Zee, E.A., Harkany, T., Holzer, M., Härtig, W.: Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J. Neurosci. 23, 6972–6981 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    Meyer, E.A., Castellano, R.K., Diederich, F.: Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003)CrossRefGoogle Scholar
  20. 20.
    Salonen, L.M., Ellermann, M., Diederich, F.: Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011)CrossRefGoogle Scholar
  21. 21.
    Schneider, H.J.: Interactions in supramolecular complexes involving arenes: experimental studies. Acct. Chem. Res. 46, 1010–1019 (2013)CrossRefGoogle Scholar
  22. 22.
    Attar, A., Bitan, G.: Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by “molecular tweezers”—from the test tube to animal models. Curr. Pharm. Des. 20, 2469–2483 (2013)CrossRefGoogle Scholar
  23. 23.
    Attar, A., Chan, W.T.C., Klärner, F.G., Schrader, T., Bitan, G.: Safety and pharmacological characterization of the molecular tweezer CLR01—a broad-spectrum inhibitor of amyloid proteins’ toxicity. BMC Pharm. Toxicol. 15, 23 (2014)Google Scholar
  24. 24.
    Klärner, F.G., Benkhoff, J., Boese, R., Burkert, U., Kamieth, M., Naatz, U.: Molecular tweezers as synthetic receptors in host-guest chemistry: inclusion of cyclohexane and self-assembly of aliphatic side chains. Angew. Chem. Int. Ed. 35, 1130–1133 (1996)CrossRefGoogle Scholar
  25. 25.
    Schrader, T., Bitan, G., Klärner, F.-G.: Molecular tweezers for lysine and arginine—powerful inhibitors of pathologic protein aggregation. Chem. Commun. 52, 11318–11334 (2016)CrossRefGoogle Scholar
  26. 26.
    Loo, J.A.: Bioanalytical mass spectrometry: many flavors to choose. Bioconjug. Chem. 6, 644–665 (1995)CrossRefPubMedGoogle Scholar
  27. 27.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefPubMedGoogle Scholar
  28. 28.
    Smith, R.D., Light-Wahl, K.J.: The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: promise, pitfalls and prognosis. Biol. Mass Spectrom. 22, 493–501 (1993)CrossRefGoogle Scholar
  29. 29.
    Leney, A.C., Heck, A.J.R.: Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017)CrossRefPubMedGoogle Scholar
  30. 30.
    Chait, B.T., Cadene, M., Olinares, P.D., Rout, M.P., Shi, Y.: Revealing higher order protein structure using mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 952–965 (2017)Google Scholar
  31. 31.
    Xie, Y., Zhang, J., Yin, S., Loo, J.A.: Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites. J. Am. Chem. Soc. 128, 14432–14433 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Ge, Y., Lawhorn, B.G., ElNaggar, M., Strauss, E., Park, J.H., Begley, T.P., McLafferty, F.W.: Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 124, 672–678 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    Yin, S., Xie, Y., Loo, J.A.: Mass spectrometry of protein-ligand complexes: enhanced gas-phase stability of ribonuclease-nucleotide complexes. J. Am. Soc. Mass Spectrom. 19, 1199–1208 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Riley, N.M., Mullen, C., Weisbrod, C.R., Sharma, S., Senko, M.W., Zabrouskov, V., Westphall, M.S., Syka, J.E.P., Coon, J.J.: Enhanced dissociation of intact proteins with high capacity electron transfer dissociation. J. Am. Soc. Mass Spectrom. 27, 520–531 (2016)CrossRefPubMedGoogle Scholar
  35. 35.
    Li, H., Wongkongkathep, P., Van Orden, S.L., Ogorzalek Loo, R.R., Loo, J.A.: Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 25, 2060–2068 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen, B., Guo, X., Tucholski, T., Lin, Z., McIlwain, S., Ge, Y.: The impact of phosphorylation on electron capture dissociation of proteins: a top-down perspective. J. Am. Soc. Mass Spectrom. 28, 1805–1814 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li, H., Nguyen, H.H., Ogorzalek-Loo, R.R., Campuzano, I.D.G., Loo, J.A.: An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nature Chem. 10, 139–148 (2018)CrossRefGoogle Scholar
  38. 38.
    Yin, S., Loo, J.A.: Top-down mass spectrometry of supercharged native protein-ligand complexes. Int. J. Mass Spectrom. 300, 118–122 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang, H., Cui, W., Wen, J., Blankenship, R.E., Gross, M.L.: Native electrospray and electron-capture dissociation in FTICR mass spectrometry provide top-down sequencing of a protein component in an intact protein assembly. J. Am. Soc. Mass Spectrom. 21, 1966–1968 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang, H., Cui, W., Wen, J., Blankenship, R.E., Gross, M.L.: Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal. Chem. 83, 5598–5606 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang, J., Ogorzalek Loo, R.R., Loo, J.A.: Structural characterization of a thrombin-aptamer complex by high resolution native top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1815–1822 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sinha, S., Lopes, D.H.J., Du, Z., Pang, E.S., Shanmugam, A., Lomakin, A., Talbiersky, P., Tennstaedt, A., McDaniel, K., Bakshi, R., Kuo, P.Y., Ehrmann, M., Benedek, G.B., Loo, J.A., Klärner, F.G., Schrader, T., Wang, C., Bitan, G.: Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 133, 16958–16969 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Acharya, S., Safaie, B.M., Wongkongkathep, P., Ivanova, M.I., Attar, A., Klärner, F.G., Schrader, T., Loo, J.A., Bitan, G., Lapidus, L.J.: Molecular basis for preventing α-synuclein aggregation by a molecular tweezer. J. Biol. Chem. 289, 10727–10737 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vöpel, T., Bravo-Rodriguez, K., Mittal, S., Vachharajani, S., Gnutt, D., Sharma, A., Steinhof, A., Fatoba, O., Ellrichmann, G., Nshanian, M., Heid, C., Loo, J.A., Klärner, F.G., Schrader, T., Bitan, G., Wanker, E.E., Ebbinghaus, S., Sanchez-Garcia, E.: Inhibition of huntingtin exon-1 aggregation by the molecular tweezer CLR01. J. Am. Chem. Soc. 139, 5640–5643 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Talbiersky, P., Bastkowski, F., Klarner, F.G., Schrader, T.: Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J. Am. Chem. Soc. 130, 9824–9828 (2008)CrossRefPubMedGoogle Scholar
  46. 46.
    Natalello, A., Santambrogio, C., Grandori, R.: Are charge-state distributions a reliable tool describing molecular ensembles of intrinsically disordered proteins by native MS? J. Am. Soc. Mass Spectrom. 28, 21–28 (2017)CrossRefPubMedGoogle Scholar
  47. 47.
    Wongkongkathep, P., Han, J.Y., Choi, T.S., Yin, S., Kim, H.I., Loo, J.A.: Native top-down mass spectrometry and ion mobility MS for characterizing the cobalt and manganese metal binding of α-synuclein protein. J. Am. Soc. Mass Spectrom. 29, in press (2018)Google Scholar
  48. 48.
    Zheng, X., Liu, D., Klärner, F.G., Schrader, T., Bitan, G., Bowers, M.T.: Amyloid β-protein assembly: the effect of molecular tweezers CLR01 and CLR03. J. Phys. Chem. B. 119, 4831–4841 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kaddis, C.S., Lomeli, S.H., Yin, S., Berhane, B., Apostol, M.I., Kickhoefer, V.A., Rome, L.H., Loo, J.A.: Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J. Am. Soc. Mass Spectrom. 18, 1206–1216 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kaddis, C.S., Loo, J.A.: Native protein MS and ion mobility: large flying proteins with ESI. Anal. Chem. 79, 1778–1784 (2007)CrossRefPubMedGoogle Scholar
  51. 51.
    Choi, T.S., Lee, J., Han, J.Y., Jung, B.C., Wongkongkathep, P., Loo, J.A., Lee, M.J., Kim, H.I.: Supramolecular modulation of structural polymorphism in pathogenic α-synuclein fibrils using copper(II) coordination. Angew. Chem. Int. Ed. 57, 3099–3103 (2018)CrossRefGoogle Scholar
  52. 52.
    Jebarupa, B., Muralidharan, M., Srinivasu, B.Y., Mandal, A.K., Mitra, G.: Effect of altered solution conditions on tau conformational dynamics: plausible implication on order propensity and aggregation. BBA - Proteins and Proteomics. 1866, 668–679 (2018)CrossRefPubMedGoogle Scholar
  53. 53.
    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81, 248–254 (2009)CrossRefPubMedGoogle Scholar
  54. 54.
    Glover, M.S., Dilger, J.M., Acton, M.D., Arnold, R.J., Radivojac, P., Clemmer, D.E.: Examining the influence of phosphorylation on peptide ion structure by ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 786–794 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ogorzalek Loo, R.R., Loo, J.A.: Salt bridge rearrangement (SaBRe) explains the dissociation behavior of noncovalent complexes. J. Am. Soc. Mass Spectrom. 27, 975–990 (2016)CrossRefPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Michael Nshanian
    • 1
  • Carter Lantz
    • 1
  • Piriya Wongkongkathep
    • 1
    • 2
  • Thomas Schrader
    • 3
  • Frank-Gerrit Klärner
    • 3
  • Anika Blümke
    • 4
  • Clément Despres
    • 5
  • Michael Ehrmann
    • 4
  • Caroline Smet-Nocca
    • 5
  • Gal Bitan
    • 6
    • 7
  • Joseph A. Loo
    • 1
    • 7
    • 8
  1. 1.Department of Chemistry and BiochemistryUniversity of California-Los AngelesLos AngelesUSA
  2. 2.Faculty of MedicineChulalongkorn UniversityBangkokThailand
  3. 3.Institute of ChemistryUniversity of Duisburg-EssenEssenGermany
  4. 4.Center of Medical Biotechnology, Faculty of BiologyUniversity of Duisburg-EssenEssenGermany
  5. 5.UMR 8576 - UGSF - Unité de Glycobiologie Structurale et FonctionnelleUniversité Lille, CNRSLilleFrance
  6. 6.Department of Neurology and Brain Research Institute, David Geffen School of MedicineUniversity of California-Los AngelesLos AngelesUSA
  7. 7.Molecular Biology InstituteUniversity of California-Los AngelesLos AngelesUSA
  8. 8.Department of Biological ChemistryUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations