Large-Area Graphene Films as Target Surfaces for Highly Reproducible Matrix-Assisted Laser Desorption Ionization Suitable for Quantitative Mass Spectrometry

  • Yoon Kyung Choi
  • Joo Yeon Oh
  • Sang Yun Han
Research Article


Due to the known sweet-spot issues that intrinsically arise from inhomogeneous formation of matrix-analyte crystals utilized as samples in matrix-assisted laser desorption ionization (MALDI) mass spectrometry, its reproducibility and thus its applications for quantification have been somewhat limited. In this paper, we report a simple strategy to improve the uniformity of matrix-analyte crystal spots, which we realized by adapting large-area graphene films, i.e., non-inert, interacting surfaces, as target surfaces. In this example, the graphitic surfaces of the graphene films interact with excess matrix molecules during the sample drying process, which induces spontaneous formation of optically uniform MALDI sample crystal layers on the film surfaces. Further, mass spectrometric imaging reveals that the visible uniformity is indeed accompanied by reproducible MALDI ionization over an entire sample spot, which greatly suppresses the appearance of sweet spots. The results of this study confirm that the proposed method achieves good linear responses of ion intensity to the analyte concentration (R2 > 0.99) with small relative standard deviations (σ < 10%), which is a range applicable for quantitative measurements using MALDI mass spectrometry.

Graphical Abstract


Large-area graphene films MALDI mass spectrometry Sample preparation Quantification 



S.Y.H. is grateful to Prof. Sunmin Ryu (POSTECH) for his kind assistance for characterization of graphene films on Cu foils using Raman spectroscopy.

Funding Information

This work was supported by MOTIE via KEIT (Grant No. 10063335). This work was also supported by MSIT via NRF (Grant No. NRF-2016R1D1A1B03931987).


  1. 1.
    Hillenkamp, F., Peter-Katalinic, J.: MALDI MS: a Practical Guide to Instrumentation, Methods and Applications, 2nd edn. Weinheim, Germany (2014)Google Scholar
  2. 2.
    Norris, J.L., Caprioli, R.M.: Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309–2342 (2013)CrossRefGoogle Scholar
  3. 3.
    Szájli, E., Fehér, T., Medzihradszky, K.F.: Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteomics. 7, 2410–2418 (2008)CrossRefGoogle Scholar
  4. 4.
    Pridmore, C.J., Mosely, J.A., Sanderson, J.M.: The reproducibility of phospholipid analyses by MALDI-MSMS. Analyst. 136, 2598–2605 (2011)CrossRefGoogle Scholar
  5. 5.
    Ahn, S.H., Park, K.M., Bae, Y.J., Kim, M.S.: Efficient methods to generate reproducible mass spectra in matrix-assisted laser desorption ionization of peptides. J. Am. Soc. Mass Spectrom. 24, 868–876 (2013)CrossRefGoogle Scholar
  6. 6.
    Vorm, O., Roepstorff, P., Mann, M.: Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal. Chem. 66, 3281–3287 (1994)CrossRefGoogle Scholar
  7. 7.
    Hensel, R.R., King, R.C., Owens, K.G.: Electrospray sample preparation for improved quantitation in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1785–1793 (1997)CrossRefGoogle Scholar
  8. 8.
    Jaskolla, T.W., Karas, M., Roth, U., Steinert, K., Menzel, C., Reihs, K.: Comparison between vacuum sublimed matrices and conventional dried droplet preparation in MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 1104–1114 (2009)CrossRefGoogle Scholar
  9. 9.
    Dai, Y., Whittal, R.M., Li, L.: Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal. Chem. 71, 1087–1091 (1999)CrossRefGoogle Scholar
  10. 10.
    Li, Y.L., Gross, M.L.: Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1833–1837 (2004)CrossRefGoogle Scholar
  11. 11.
    Sun, P., Armstrong, D.W.: Ionic liquids in analytical chemistry. Anal. Chim. Acta. 661, 1–16 (2010)CrossRefGoogle Scholar
  12. 12.
    Silina, Y.E., Volmer, D.A.: Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst. 138, 7053–7065 (2013)CrossRefGoogle Scholar
  13. 13.
    Woo, H.-K., Northen, T.R., Yanes, O., Siuzdak, G.: Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat. Protoc. 3, 1341–1349 (2008)CrossRefGoogle Scholar
  14. 14.
    Shin, W.J., Shin, J.H., Song, J.Y., Han, S.Y.: Effects of ZnO nanowire length on surface-assisted laser desorption/ionization of small molecules. J. Am. Soc. Mass Spectrom. 21, 989–992 (2010)CrossRefGoogle Scholar
  15. 15.
    Sekuła, J., Nizioł, J., Rode, W., Ruman, T.: Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal. Chim. Acta. 875, 61–72 (2015)CrossRefGoogle Scholar
  16. 16.
    Duan, J., Linman, M.J., Cheng, Q.: Ultrathin calcinated films on a gold surface for highly effective laser desorption/ionization of biomolecules. Anal. Chem. 82, 5088–5094 (2010)CrossRefGoogle Scholar
  17. 17.
    Kim, S.H., Lee, A., Song, J.Y., Han, S.Y.: Laser-induced thermal desorption facilitates postsource decay of peptide ions. J. Am. Soc. Mass Spectrom. 23, 935–941 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, Z., Kuang, J., Li, L.: Liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometric imaging with sprayed matrix for improved sensitivity, reproducibility and quantitation. Analyst. 138, 6600–6606 (2013)CrossRefGoogle Scholar
  19. 19.
    Kudina, O., Eral, B., Mugele, F.: e-MALDI: an electrowetting-enhanced drop drying method for MALDI mass spectrometry. Anal. Chem. 88, 4669–4675 (2016)CrossRefGoogle Scholar
  20. 20.
    Pabst, M., Fagerer, S.R., Köhling, R., Küster, S.K., Steinhoff, R., Badertscher, M., Wahl, F., Dittrich, P.S., Jefimovs, K., Zenobi, R.: Self-aliquoting microarray plates for accurate quantitative matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 85, 9771–9776 (2013)CrossRefGoogle Scholar
  21. 21.
    Novoselov, K.S., Fal'ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature. 490, 192–200 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhao, G., Li, X., Huang, M., Zhen, Z., Zhong, Y., Chen, Q., Zhao, X., He, Y., Hu, R., Yang, T., Zhang, R., Li, C., Kong, J., Xu, J.B., Ruoff, R.S., Zhu, H.: The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017)CrossRefGoogle Scholar
  23. 23.
    Dong, X., Cheng, J., Li, J., Wang, Y.: Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem. 82, 6208–6214 (2010)CrossRefGoogle Scholar
  24. 24.
    Lee, J., Kim, Y.-K., Min, D.-H.: Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc. 132, 14714–14717 (2010)CrossRefGoogle Scholar
  25. 25.
    Lu, M., Lai, Y., Chen, G., Cai, Z.: Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem. 83, 3161–3169 (2011)CrossRefGoogle Scholar
  26. 26.
    Liu, C.-W., Chien, M.-W., Su, C.-Y., Chen, H.-Y., Li, L.-J., Lai, C.-C.: Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 137, 5809–5816 (2012)CrossRefGoogle Scholar
  27. 27.
    Rodríguez, C.E., Palacios, J., Fajardo, I., Urdiales, J.L., Le Guével, X., Lozano, J., Sánchez-Jiménez, F.: Conventional matrices loaded onto a graphene layer enhances MALDI-TOF/TOF signal: its application to improve detection of phosphorylated peptides. J. Am. Soc. Mass Spectrom. 27, 366–369 (2016)CrossRefGoogle Scholar
  28. 28.
    Cai, L., Sheng, L., Xia, M., Li, Z., Zhang, S., Zhang, X., Chen, H.: Graphene oxide as a novel evenly continuous phase matrix for TOF-SIMS. J. Am. Soc. Mass Spectrom. 28, 399–408 (2017)CrossRefGoogle Scholar
  29. 29.
    Zhou, D., Guo, S., Zhang, M., Liu, Y., Chen, T., Li, Z.: Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal. Chim. Acta. 962, 52–59 (2017)CrossRefGoogle Scholar
  30. 30.
    Friesen, W.L., Schultz, B.J., Destino, J.F., Alivio, T.E.G., Steet, J.R., Banerjee, S., Wood, T.D.: Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 1963–1966 (2015)CrossRefGoogle Scholar
  31. 31.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324, 1312–1314 (2009)CrossRefGoogle Scholar
  32. 32.
    Ryu, J., Kim, Y., Won, D., Kim, N., Park, J.S., Lee, E.-K., Cho, D., Cho, S.-P., Kim, S.J., Ryu, G.H., Shin, H.-A.-S., Lee, Z., Hong, B.H., Cho, S.: Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano. 8, 950–956 (2014)CrossRefGoogle Scholar
  33. 33.
    Park, C.W., Jo, Y., Jo, E.J.: Enhancement of ovarian tumor classification by improved reproducibility in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of serum glycans. Anal. Biochem. 443, 58–65 (2013)CrossRefGoogle Scholar
  34. 34.
    Bouschen, W., Spengler, B.: Artifacts of MALDI sample preparation investigated by high-resolution scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) imaging mass spectrometry. Int. J. Mass Spectrom. 266, 129–137 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of NanochemistryGachon UniversitySeongnam-siRepublic of Korea
  2. 2.ASTA Corp.Suwon-siRepublic of Korea

Personalised recommendations