Disulfide Connectivity Analysis of Peptides Bearing Two Intramolecular Disulfide Bonds Using MALDI In-Source Decay

  • Philippe MassonnetEmail author
  • Jean R. N. Haler
  • Gregory Upert
  • Nicolas Smargiasso
  • Gilles Mourier
  • Nicolas Gilles
  • Loïc Quinton
  • Edwin De Pauw
Research Article


Disulfide connectivity in peptides bearing at least two intramolecular disulfide bonds is highly important for the structure and the biological activity of the peptides. In that context, analytical strategies allowing a characterization of the cysteine pairing are of prime interest for chemists, biochemists, and biologists. For that purpose, this study evaluates the potential of MALDI in-source decay (ISD) for characterizing cysteine pairs through the systematic analysis of identical peptides bearing two disulfide bonds, but not the same cysteine connectivity. Three different matrices have been tested in positive and/or in negative mode (1,5-DAN, 2-AB and 2-AA). As MALDI-ISD is known to partially reduce disulfide bonds, the data analysis of this study rests firstly on the deconvolution of the isotope pattern of the parent ions. Moreover, data analysis is also based on the formed fragment ions and their signal intensities. Results from MS/MS-experiments (MALDI-ISD-MS/MS) constitute the last reference for data interpretation. Owing to the combined use of different ISD-promoting matrices, cysteine connectivity identification could be performed on the considered peptides.

Graphical Abstract


Mass spectrometry Peptide Disulfide bonds MALDI ISD Isomers 



The authors thank the FRS-FNRS for the financial support (FRIA and instrumentation), the Fonds Européen de développement regional (FEDER), the Walloon region, and the European commission (F.P. 7 VENOMICS project) for financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

13361_2018_2022_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1.08 mb)


  1. 1.
    Lewis, R.J., Garcia, M.L.: Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2, 790–802 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    Craik, D.J., Daly, N.L., Bond, T., Waine, C.: Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999)CrossRefPubMedGoogle Scholar
  3. 3.
    Lindholm, P., Goransson, U., Johansson, S., Claeson, P., Gullbo, J., Larsson, R., Bohlin, L., Backlund, A.: Cyclotides: a novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369 (2002)PubMedGoogle Scholar
  4. 4.
    Ganz, T.: Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    Lehrer, R.I., Ganz, T.: Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23–27 (1999)CrossRefPubMedGoogle Scholar
  6. 6.
    Góngora-Benítez, M., Tulla-Puche, J., Albericio, F.: Multifaceted roles of disulfide bonds. peptides as therapeutics. Chem. Rev. 114, 901–926 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    Gray, W.R.: Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci. 2, 1732–1748 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thornton, J.M.: Disulphide bridges in globular proteins. J. Mol. Biol. 151, 261–287 (1981)CrossRefPubMedGoogle Scholar
  9. 9.
    Raina, S., Missiakas, D.: Making and breaking disulfide bonds. Annu. Rev. Microbiol. 51, 179–202 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Betz, S.F.: Disulfide bonds and the stability of globular proteins. Protein Sci. 2, 1551–1558 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Khakshoor, O., Nowick, J.S.: Use of disulfide “staples” to stabilize β-sheet quaternary structure. Org. Lett. 11, 3000–3003 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cashman, T.J., Linton, B.R.: β-sheet hydrogen bonding patterns in cystine peptides. Org. Lett. 9, 5457–5460 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Leduc, A.-M., Trent, J.O., Wittliff, J.L., Bramlett, K.S., Briggs, S.L., Chirgadze, N.Y., Wang, Y., Burris, T.P., Spatola, A.F.: Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc. Natl. Acad. Sci. U. S. A. 100, 11273–11278 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santiveri, C.M., León, E., Rico, M., Jiménez, M.A.: Context-dependence of the contribution of disulfide bonds to β-hairpin stability. Chem. – A Eur. J. 14, 488–499 (2008)CrossRefGoogle Scholar
  15. 15.
    Bock, J.E., Gavenonis, J., Kritzer, J.A.: Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints, (2013)Google Scholar
  16. 16.
    Wu, Y., Wu, X., Yu, J., Zhu, X., Zhangsun, D., Luo, S.: Influence of disulfide connectivity on structure and bioactivity of α-conotoxin TxIA. Molecules. 19, 966–979 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    Benham, C.J., Jafri, M.S.: Disulfide bonding patterns and protein topologies. Protein Sci. 2, 41–54 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Walewska, A., Skalicky, J.J., Davis, D.R., Zhang, M.-M., Lopez-Vera, E., Watkins, M., Han, T.S., Yoshikami, D., Olivera, B.M., Bulaj, G.: NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the μ-conotoxin SxIIIA. J. Am. Chem. Soc. 130, 14280–14286 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mobli, M., King, G.F.: NMR methods for determining disulfide-bond connectivities. Toxicon. 56, 849–854 (2010)CrossRefPubMedGoogle Scholar
  20. 20.
    Calvete, J.J., Schrader, M., Raida, M., McLane, M.A., Romero, A., Niewiarowski, S.: The disulphide bond pattern of bitistatin, a disintegrin isolated from the venom of the viper Bitis arietans. FEBS Lett. 416, 197–202 (1997)CrossRefPubMedGoogle Scholar
  21. 21.
    Bauer, M., Sun, Y., Degenhardt, C., Kozikowski, B.: Assignment of all four disulfide bridges in echistatin. J. Protein Chem. 12, 759–764 (1993)CrossRefPubMedGoogle Scholar
  22. 22.
    Durand, K.L., Ma, X., Plummer, C.E., Xia, Y.: Tandem mass spectrometry (MSn) of peptide disulfide regio-isomers via collision-induced dissociation: utility and limits in disulfide bond characterization. Int. J. Mass Spectrom. 343–344, 50–57 (2013)CrossRefGoogle Scholar
  23. 23.
    Durand, K.L., Ma, X., Xia, Y.: Intra-molecular reactions between cysteine sulfinyl radical and a disulfide bond within peptide ions. Int. J. Mass Spectrom. 378, 246–254 (2015)CrossRefGoogle Scholar
  24. 24.
    Massonnet, P., Upert, G., Smargiasso, N., Gilles, N., Quinton, L., De Pauw, E.: Combined use of ion mobility and collision-induced dissociation to investigate the opening of disulfide bridges by electron-transfer dissociation in peptides bearing two disulfide bonds. Anal. Chem. 87, 5240–5246 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    Tan, L., Durand, K.L., Ma, X., Xia, Y.: Radical cascades in electron transfer dissociation (ETD)—implications for characterizing peptide disulfide regio-isomers. Analyst. (2013)Google Scholar
  26. 26.
    Fukuyama, Y., Iwamoto, S., Tanaka, K.: Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J. Mass Spectrom. 41, 191–201 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    Demeure, K., Gabelica, V., De Pauw, E.A.: New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J. Am. Soc. Mass Spectrom. 21, 1906–1917 (2010)PubMedGoogle Scholar
  28. 28.
    Asakawa, D.: Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom. Rev. (2014)Google Scholar
  29. 29.
    Yang, H., Liu, N., Liu, S.: Determination of peptide and protein disulfide linkages by MALDI mass spectrometry. Top. Curr. Chem. 331, 79–116 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    Quinton L., Demeure K., Dobson R., Gilles N., Gabelica V., De Pauw E.: New method for characterizing highly disulfide-bridged peptides in complex mixtures: application to toxin identification from crude venoms. (2007)Google Scholar
  31. 31.
    Volker Schnaible, Stephan Wefing, Anja Resemann, Detlev Suckau, Anne Bücker, Sybille Wolf-Kümmeth, Hoffmann, D.: Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS. (2002)Google Scholar
  32. 32.
    Hardouin, J.: Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom. Rev. 26, 672–682 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    Massonnet, P., Haler, J.R.N.J.R.N., Upert, G., Degueldre, M., Morsa, D., Smargiasso, N., Mourier, G., Gilles, N., Quinton, L., De Pauw, E.: Ion mobility-mass spectrometry as a tool for the structural characterization of peptides bearing intramolecular disulfide bond(s). J. Am. Soc. Mass Spectrom. 27, 1637–1646 (2016)CrossRefPubMedGoogle Scholar
  34. 34.
    Abdel Azzem, M., Yousef, U.S., Limosin, D., Pierre, G.: Electro-oxidative oligomerization of 1,5-diaminonaphthalene in acetonitrile medium. J. Electroanal. Chem. 417, 163–173 (1996)CrossRefGoogle Scholar
  35. 35.
    Smargiasso, N., Quinton, L., De Pauw, E.: 2-Aminobenzamide and 2-aminobenzoic acid as new MALDI matrices inducing radical mediated in-source decay of peptides and proteins. J. Am. Soc. Mass Spectrom. 23, 469–474 (2012)CrossRefPubMedGoogle Scholar
  36. 36.
    Asakawa, D., Smargiasso, N., Quinton, L., De Pauw, E.: Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry, (2013)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Mass Spectrometry Laboratory, MolSys Research UnitUniversity of LiègeLiegeBelgium
  2. 2.Commissariat à l’Energie Atomique, DRF/SIMOPROGif sur YvetteFrance

Personalised recommendations