Advertisement

Method for Quantifying Oxidized Methionines and Application to HIV-1 Env

  • Joshua T. Shipman
  • Eden P. Go
  • Heather Desaire
Research Article

Abstract

Recombinantly expressed proteins are susceptible to oxidation during expression, purification, storage, and analysis; the residue most susceptible to oxidation is methionine. Methionine oxidation can be overestimated using current quantitative analysis methods because oxidation can occur during sample preparation, and researchers often do not use methods that account for this possibility. An experimental strategy had been developed previously to solve this problem through the use of an 18O-labeled hydrogen peroxide reagent. However, the method did not address the analysis of peptides that contained multiple methionine residues. Herein, we develop and validate a new analysis method that uses theoretical isotope distributions and experimental spectra to quantify methionine oxidation that is present prior to sample preparation. The newly described approach is more rapid than the previously described method, and it needs only half the amount of protein for analysis. This method was validated using model proteins; then, it was applied to the analysis of recombinant HIV-1 Env, the key protein in HIV vaccine candidates. While Met oxidation of this protein could not be analyzed using previous methods, the approach described herein was useful for determining the oxidation state of HIV-Env.

Graphical Abstract

Keywords

Methionine oxidation PTMs post-translational modification Stable isotope labeling Env HIV Quantitation Mass spectrometry 

Notes

Acknowledgements

We would like to thank Drs. Barton F. Haynes and S. Munir Alam at the Duke Human Vaccine Institute for kindly providing the Env protein for these studies.

Funding Information

This study received funding from NIH (grants R01AI125093, R01AI094797, and T32-GM008359).

References

  1. 1.
    Lu, H.S., Fausset, P.R., Narhi, L.O., Horan, T., Shinagawa, K., Shimamoto, G., Boone, T.C.: Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Arch. Biochem. Biophys. 362, 1–11 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    Luo, X., Uehara, H., Shacter, E.: Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation. Free Radic. Biol. Med. 75, 84–94 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    Barb, A.W., Prestegard, J.H.: NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol. 7(3), 147–153 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gaza-Bulseco, G., Faldu, S., Hurkmans, K., Chumsae, C., Liu, H.: Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein a and protein G. J. Chromatogr. B. 870, 55–62 (2008)CrossRefGoogle Scholar
  5. 5.
    Castegna, A., Aksenova, M., Aksenova, M., Thongboonkerd, V., Klein, J.B., Pierce, W.M., Booze, R., Markesvery, W.R., Butterfield, D.A.: Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33(4), 562–571 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    Garner, M.H., Spector, A.: Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc. Natl. Acad. Sci. U. S. A. 77(3), 1274–1277 (1980)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berti, P.J., Ekiel, I., Lindahl, P., Abrahamson, M., Storer, A.C.: Affinity purification and elimination of methionine oxidation in recombinant human cystatin C. Protein Expr. Purif. 11, 111–118 (1997)CrossRefPubMedGoogle Scholar
  8. 8.
    Lam, X.M., Yang, J.Y., Cleland, J.L.: Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J. Pharm. Sci. 86(11), 1250–1255 (1997)CrossRefPubMedGoogle Scholar
  9. 9.
    Krishnamurthy, R., Madurawe, R.D., Bush, K.D., Lumpkin, J.A.: Conditions promoting metal-catalyzed oxidations during immobilized Cu-iminodiacetic acid metal affinity-chromatography. Biotechnol. Prog. 11, 643–650 (1995)CrossRefGoogle Scholar
  10. 10.
    Sun, G., Anderson, V.E.: Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis. 25, 959–965 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    Chumsae, C., Gaza-Bulseco, G., Sun, J., Liu, H.: Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J. Chromatogr. B. 850, 285–294 (2007)CrossRefGoogle Scholar
  12. 12.
    Zang, L., Carlage, T., Murphy, D., Frenkel, R., Bryngelson, P., Madsen, M., Lyubarskaya, Y.: Residual metals cause variability in methionine oxidation measurements in protein pharmaceuticals using LC-UV/MS peptide mapping. J. Chromatogr. B. 895-896, 71–76 (2012)CrossRefGoogle Scholar
  13. 13.
    Cook, K.D., Chen, M.: Oxidation artifacts in the electrospray mass spectrometry of Aβ peptide. Anal. Chem. 79, 2031–2036 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu, H., Ponniah, G., Neill, A., Patel, R., Andrien, B.: Accurate determination of protein methionine oxidation by stable isotope labeling and LC-MS analysis. Anal. Chem. 85, 11705–11709 (2013)CrossRefPubMedGoogle Scholar
  15. 15.
    Sharp, J.S., Becker, J.M., Hettich, R.L.: Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal. Biochem. 313, 216–225 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Duenas, E.T., Keck, R., Devos, A., Jones, A.J.S., Cleland, J.L.: Comparison between light induced and chemically induced oxidation of rhVEGF. Pharm. Res. 18(10), 1455–1460 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    Bjellaas, T., Holm, A., Molander, P., Tørnes, J.A., Greibrokk, T., Lundanes, E.: Trace determination of peptides in water samples using packed capillary liquid chromatography with UV and MS detection and characterization of peptide oxidation products by MS. Anal. Bioanal. Chem. 378, 1021–1030 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    Brock, J.W.C., Ames, J.M., Thorpe, S.R., Baynes, J.W.: Formation of methionine sulfoxide during glycoxidation and lipoxidation of ribonuclease A. Arch. Biochem. Biophys. 457(2), 170–176 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    Houde, D., Kauppinen, P., Mhatre, R., Lyubarskaya, Y.: Determination of protein oxidation by mass spectrometry and method transfer to quality control. J. Chromatogr. A. 1123, 189–198 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Haynes, B.F.: New approaches to HIV vaccine development. Curr. Opin. Immunol. 35, 39–47 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van Gils, M.J., Sanders, R.W.: Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology. 435, 46–56 (2013)CrossRefPubMedGoogle Scholar
  22. 22.
    Sanders, R.W., Moore, J.P.: Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    MacCoss, M.J., Wu, C.C., Matthews, D.E., Yates III, J.R.: Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal. Chem. 77, 7646–7653 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    Go, E.P., Ding, H., Zhang, S., Ringe, R.P., Nicely, N., Hua, D., Steinbock, R.T., Golabek, M., Alin, J., Alam, S.M., Cupo, A., Haynes, B.F., Kappes, J.C., Moore, J.P., Sodroski, J.G., Desaire, H.: Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven Env trimers. J. Virol. 91(9), e02428-16 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang, R., Jain, T., Lynaugh, H., Nobrega, R.P., Lu, X., Boland, T., Burnina, I., Sun, T., Caffry, I., Brown, W., Zhi, X., Lilov, A., Xu, Y.: Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. MAbs. 9(4), 646–653 (2017)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations