Advertisement

Atmospheric Solid Analysis Probe Coupled to Ion Mobility Spectrometry-Mass Spectrometry, a Fast and Simple Method for Polyalphaolefin Characterization

  • Anna Luiza Mendes Siqueira
  • Mathieu Beaumesnil
  • Marie Hubert-Roux
  • Corinne Loutelier-Bourhis
  • Carlos Afonso
  • Yang Bai
  • Marion Courtiade
  • Amandine Racaud
Research Article

Abstract

Polyalphaolefins (PAOs) are polymers produced from linear alpha olefins through catalytic oligomerization processes. The PAOs are known as synthetic high-performance base stock fluids used to improve the efficiency of many other synthetic products. In this study, we report the direct characterization of PAOs using atmospheric solid analysis probe (ASAP) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS). We studied different PAOs grades exhibiting low- and high-viscosity index. Specific adjustments of the ASAP source parameters permitted the monitoring of ionization processes as three mechanisms could occur for these compounds: hydride abstraction, nitrogen addition, and/or the formation of [M−2H]+• ions. Several series of fragment ions were obtained, which allowed the identification of the alpha olefin used to synthesize the PAO. The use of the ion mobility separation dimension provides information on isomeric species. In addition, the drift time versus m/z plots permitted rapid comparison between PAO samples and to evidence their complexity. These 2D plots appear as fingerprints of PAO samples. To conclude, the resort to ASAP-IMS-MS provides a rapid characterization of the PAO samples in a direct analysis approach, without any sample preparation.

Graphical Abstract

Keywords

ASAP-IMS/MS Polyalphaolefin characterization Synthetic fluids Pyrolysis 

Notes

Acknowledgements

The authors thank the European Regional Development Fund (ERDF; No. 31708), the Region Normandie (Crunch Network, No. 20-13), the Labex SynOrg (ANR-11-LABX-0029), and TOTAL for the financial support.

Supplementary material

13361_2018_1991_MOESM1_ESM.docx (104 kb)
ESM 1 (DOCX 103 kb)

References

  1. 1.
    Shubkin, R.L.: In: Lappin, G.R., Sauer, J.D. (eds.) Alphaolefin Application Handbook, pp. 353–373. Marcel Dekker, New York (1989)Google Scholar
  2. 2.
    Rudnick, L.R.: In: Rudnick, L.R. (ed.) Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd edn, pp. 3–40. CRC Press, New York (2013)CrossRefGoogle Scholar
  3. 3.
    Brown, M., Fotheringham, J.D., Hoyes, T.J., Mortier, R.M., Orszulik, S.T., Randles, S.J., Stroud, P.M.: Synthetic base fluids. In: Mortier, K.A., Fox, M.F., Orszulik, S.T. (eds.) Chemistry and technology of lubricants, pp. 35–74. Springer, Netherlands (2009)Google Scholar
  4. 4.
    Ray, S., Rao, P.V.C., Choudary, N.V.: Poly-α-olefin-based synthetic lubricants: a short review on various synthetic routes. Lubr. Sci. 24, 23–44 (2012)CrossRefGoogle Scholar
  5. 5.
    Mortier, R.M., Fox, M.F., Orszulik, S.T.: Chem Technol Lubricants. (2010).  https://doi.org/10.1007/978-1-4020-8662-5
  6. 6.
    Dimaio, A.-J.: Crompton Corp, USA p. 17 (2003)Google Scholar
  7. 7.
    Miyake, S., Kibino, N., Monoi, T., Ohira, H., Inazawa, S.; Showa Denko K. K., Japan: 1993, p 29 pp.Google Scholar
  8. 8.
    Welton, T.: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)CrossRefGoogle Scholar
  9. 9.
    O'Connor, C.T., Kojima, M.: Alkene oligomerization. Catal. Today. 6, 329–349 (1990)CrossRefGoogle Scholar
  10. 10.
    Shubkin, R.L., Baylerian, M.S., Maler, A.R.: Olefin oligomer synthetic lubricants: structure and mechanism of formation. Ind. Eng. Chem. Prod. Res. Dev. 19, 15–19 (1980)CrossRefGoogle Scholar
  11. 11.
    Wahner, U.M., Brüll, R., Pasch, H., Raubenheimer, H.G., Sanderson, R.: Oligomerisation of 1-pentene with metallocene catalysts. Die Angewandte Makromolekulare Chemie. 270, 49–55 (1999)CrossRefGoogle Scholar
  12. 12.
    Benda, R., Bullen, J., Plomer, A.: Synthetics basics: Polyalphaolefins — base fluids for high-performance lubricants. J. Synthetic Lubric. 13, 41–57 (1996)CrossRefGoogle Scholar
  13. 13.
    Ghosh, R., Bandyopadhyay, A.R., Jasra, R., Gagjibhai, M.M.: Mechanistic study of the oligomerization of olefins. Ind. Eng. Chem. Res. 53, 7622–7628 (2014)CrossRefGoogle Scholar
  14. 14.
    Kapur, G.S., Sarpal, A.S., Sarin, R., Jain, S.K., Srivastava, S.P., Bhatnagar, A.K.: Detailed characterisation of polyalphaolefins and their branched structures using multi-pulse NMR techniques. J. Synthetic Lubric. 15, 177–191 (1998)CrossRefGoogle Scholar
  15. 15.
    Onopchenko, A., Cupples, B.L., Kresge, A.N.: Boron fluoride-catalyzed oligomerization of alkenes: structures, mechanisms, and properties. Ind. Eng. Chem. Prod. Res. Dev. 22, 182–191 (1983)CrossRefGoogle Scholar
  16. 16.
    Scheuermann, S.S., Eibl, S., Bartl, P.: Detailed characterisation of isomers present in polyalphaolefin dimer and the effect of isomeric distribution on bulk properties. Lubr. Sci. 23, 221–232 (2011)CrossRefGoogle Scholar
  17. 17.
    Gee, J.C., Small, B.L., Hope, K.D.: Behavior of protonated cyclopropyl intermediates during polyalphaolefin synthesis: mechanism and predicted product distribution. J. Phys. Org. Chem. 25, 1409–1417 (2012)CrossRefGoogle Scholar
  18. 18.
    Huang, Q., Chen, L., Sheng, Y., Ma, L., Fu, Z., Yang, W.: Synthesis and characterization of oligomer from 1-decene catalyzed by AlCl3/TiCl4/SiO2/Et2AlCl. J. Appl. Polym. Sci. 101, 584–590 (2006)Google Scholar
  19. 19.
    McEwen, C.N., McKay, R.G., Larsen, B.S.: Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 77, 7826–7831 (2005)CrossRefGoogle Scholar
  20. 20.
    McEwen, C.N. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: 2010,  https://doi.org/10.1002/9780470027318.a9045
  21. 21.
    Barrere, C., Maire, F., Afonso, C., Giusti, P.: Atmospheric solid analysis probe-ion mobility mass spectrometry of polypropylene. Anal. Chem. 84, 9349–9354 (2012)CrossRefGoogle Scholar
  22. 22.
    Barrere, C., Hubert-Roux, M., Afonso, C., Racaud, A.: Rapid analysis of lubricants by atmospheric solid analysis probe-ion mobility mass spectrometry. J. Mass Spectrom. 49, 709–715 (2014)CrossRefGoogle Scholar
  23. 23.
    Farenc, M., Witt, M., Craven, K., Barrere-Mangote, C., Afonso, C., Giusti, P.: Characterization of polyolefin pyrolysis species produced under ambient conditions by Fourier transform ion cyclotron resonance mass spectrometry and ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 507–514 (2017)CrossRefGoogle Scholar
  24. 24.
    Twohig, M., Shockcor, J.P., Wilson, I.D., Nicholson, J.K., Plumb, R.S.: Use of an atmospheric solids analysis probe (ASAP) for high throughput screening of biological fluids: preliminary applications on urine and bile. J. Proteome Res. 9, 3590–3597 (2010)CrossRefGoogle Scholar
  25. 25.
    Petucci, C., Diffendal, J.: Atmospheric solids analysis probe: a rapid ionization technique for small molecule drugs. J. Mass Spectrom. 43, 1565–1568 (2008)CrossRefGoogle Scholar
  26. 26.
    Fussell, R.J., Chan, D., Sharman, M.: An assessment of atmospheric-pressure solids-analysis probes for the detection of chemicals in food. TrAC Trends Anal. Chem. 29, 1326–1335 (2010)CrossRefGoogle Scholar
  27. 27.
    Trimpin, S., Wijerathne, K., McEwen, C.N.: Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry. Anal. Chim. Acta. 654, 20–25 (2009)CrossRefGoogle Scholar
  28. 28.
    Smith, M.J.P., Cameron, N.R., Mosely, J.A.: Evaluating atmospheric pressure solids analysis probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers. Analyst. 137, 4524–4530 (2012)CrossRefGoogle Scholar
  29. 29.
    Vieillard, J., Hubert-Roux, M., Brisset, F., Soulignac, C., Fioresi, F., Mofaddel, N., Morin-Grognet, S., Afonso, C., Le Derf, F.: Atmospheric solid analysis probe-ion mobility mass spectrometry: an original approach to characterize grafting on cyclic olefin copolymer surfaces. Langmuir. 31, 13138–13144 (2015)CrossRefGoogle Scholar
  30. 30.
    Ballesteros-Gomez, A., de Boer, J., Leonards, P.E.: Novel analytical methods for flame retardants and plasticizers based on gas chromatography, comprehensive two-dimensional gas chromatography, and direct probe coupled to atmospheric pressure chemical ionization-high resolution time-of-flight-mass spectrometry. Anal. Chem. 85, 9572–9580 (2013)CrossRefGoogle Scholar
  31. 31.
    Wang, S.-Z., Fan, X., Zheng, A.-L., Wang, Y.-G., Dou, Y.-Q., Wei, X.-Y., Zhao, Y.-P., Wang, R.-Y., Zong, Z.-M., Zhao, W.: Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds. Fuel 117. Part A. 556–563 (2014)Google Scholar
  32. 32.
    Wu, C., Qian, K., Walters, C.C., Mennito, A.: Application of atmospheric pressure ionization techniques and tandem mass spectrometry for the characterization of petroleum components. Int. J. Mass Spectrom. 377, 728–735 (2015)CrossRefGoogle Scholar
  33. 33.
    Farenc, M., Corilo, Y.E., Lalli, P.M., Riches, E., Rodgers, R.P., Afonso, C., Giusti, P.: Comparison of atmospheric pressure ionization for the analysis of heavy petroleum fractions with ion mobility-mass spectrometry. Energy Fuel. 30, 8896–8903 (2016)CrossRefGoogle Scholar
  34. 34.
    Ahmed, A., Cho, Y.J., No, M.-h., Koh, J., Tomczyk, N., Giles, K., Yoo, J.S., Kim, S.: Application of the Mason−Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil. Anal. Chem. 83, 77–83 (2011)CrossRefGoogle Scholar
  35. 35.
    Wesdemiotis, C.: Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew Chem Int Ed Engl. 56, 1452–1464 (2017)CrossRefGoogle Scholar
  36. 36.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)CrossRefGoogle Scholar
  37. 37.
    Hill, H.H., Siems, W.F.: St. Louis, R.H.: ion mobility spectrometry. Anal. Chem. 62, 1201A–1209A (1990)Google Scholar
  38. 38.
    Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility–mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)CrossRefGoogle Scholar
  39. 39.
    Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)CrossRefGoogle Scholar
  40. 40.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefGoogle Scholar
  41. 41.
    Marotta, E., Paradisi, C.: A mass spectrometry study of alkanes in air plasma at atmospheric pressure. J. Am. Soc. Mass Spectrom. 20, 697–707 (2009)CrossRefGoogle Scholar
  42. 42.
    Borsdorf, H., Nazarov, E.G., Eiceman, G.A.: Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques. J. Am. Soc. Mass Spectrom. 13, 1078–1087 (2002)CrossRefGoogle Scholar
  43. 43.
    Bell, S.E., Ewing, R.G., Eiceman, G.A., Karpas, Z.: Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes. J. Am. Soc. Mass Spectrom. 5, 177–185 (1994)CrossRefGoogle Scholar
  44. 44.
    Jin, C., Viidanoja, J., Li, M., Zhang, Y., Ikonen, E., Root, A., Romanczyk, M., Manheim, J., Dziekonski, E., Kenttämaa, H.I.: Comparison of atmospheric pressure chemical ionization and field ionization mass spectrometry for the analysis of large saturated hydrocarbons. Anal. Chem. 88, 10592–10598 (2016)CrossRefGoogle Scholar
  45. 45.
    Gao, J., Owen, B.C., Borton, D.J., Jin, Z., Kenttämaa, H.I.: HPLC/APCI mass spectrometry of saturated and unsaturated hydrocarbons by using hydrocarbon solvents as the APCI reagent and HPLC mobile phase. J. Am. Soc. Mass Spectrom. 23, 816–822 (2012)CrossRefGoogle Scholar
  46. 46.
    Heine, C.E., Geddes, M.M.: Field-dependent [M – 2H]+. Formation in the field desorption mass spectrometric analysis of hydrocarbon samples. Org. Mass Spectrom. 29, 277–282 (1994)CrossRefGoogle Scholar
  47. 47.
    Li, G., Li, X., Ouyang, Z., Cooks, R.G.: Carbon–carbon bond activation in saturated hydrocarbons by field-assisted nitrogen fixation. Angew. Chem. Int. Ed. 52, 1040–1043 (2013)CrossRefGoogle Scholar
  48. 48.
    Budzikiewicz, H., Djerassi, C., Williams, D.H.: Mass spectrometry of organic compounds. J. Pharm. Sci. 57, 355–355 (1968)CrossRefGoogle Scholar
  49. 49.
    Munson, B. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: 2006,  https://doi.org/10.1002/9780470027318.a6004
  50. 50.
    Field, F.H.: Chemical ionization mass spectrometry. In: Franklin, J.L. (ed.) Ion-molecule reactions: volume 1, pp. 261–313. Springer US: Boston (1972)Google Scholar
  51. 51.
    Field, F.H.: Chemical ionization mass spectrometry. VIII. Alkenes and alkynes. J. Am. Chem. Soc. 90, 5649–5656 (1968)CrossRefGoogle Scholar
  52. 52.
    Harrison: A.G. In: Chemical Ionization Mass Spectrometry; 2 Ed.; Taylor & Francis (1992)Google Scholar
  53. 53.
    Farenc, M., Paupy, B., Marceau, S., Riches, E., Afonso, C., Giusti, P.: Effective ion mobility peak width as a new isomeric descriptor for the untargeted analysis of complex mixtures using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2476–2482 (2017)CrossRefGoogle Scholar
  54. 54.
    Ponthus, J., Riches, E.: Evaluating the multiple benefits offered by ion mobility-mass spectrometry in oil and petroleum analysis. Int. J. Ion Mobil. Spectrom. 16, 95–103 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOFMont-Saint-Aignan CedexFrance
  2. 2.TOTAL Marketing Services, Research CenterSolaizeFrance

Personalised recommendations