Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1848–1860 | Cite as

Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

  • Peggy E. Williams
  • David L. Marshall
  • Berwyck L. J. Poad
  • Venkateswara R. Narreddula
  • Benjamin B. Kirk
  • Adam J. Trevitt
  • Stephen J. Blanksby
Focus: Application of Photons and Radicals for MS: Research Article

Abstract

In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

Graphical Abstract

Keywords

Distonic ions Phenyl radicals Peroxyl radicals Ion-molecule reactions Reaction kinetics Electronic structure calculations 

Notes

Acknowledgements

The data reported in this paper were obtained at the Central Analytical Research Facility (CARF) operated by the Institute for Future Environments at the Queensland University of Technology. Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT). A.J.T., B.L.J.P., and S.J.B. acknowledge financial support from the Australian Research Council (ARC) through the Discovery Project scheme (DP140101237 and DP170101596). The authors also acknowledge the generous allocation of computing resources by the NCI National Facility (Canberra, Australia) under Merit Allocation Scheme.

Supplementary material

13361_2018_1988_MOESM1_ESM.docx (643 kb)
ESM 1 Additional experimental details, mass spectra and computational archive data are provided as supporting information. An archive of the raw data files used to create some of the figures in this manuscript can be accessed at https://researchdatafinder.qut.edu.au/display/n7962(DOCX 643 kb)

References

  1. 1.
    Zádor, J., Taatjes, C.A., Fernandes, R.X.: Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Comb. Sci. 37, 371–421 (2011)CrossRefGoogle Scholar
  2. 2.
    Orlando, J.J., Tyndall, G.S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem. Soc. Rev. 41, 6294–6317 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Li, R., Smith, R.L., Kenttamaa, H.I.: Fluorine substitution enhances the reactivity of substituted phenyl radicals toward organic hydrogen atom donors. J. Am. Chem. Soc. 118, 5056–5061 (1996)CrossRefGoogle Scholar
  4. 4.
    Smith, R.L., Kenttamaa, H.I.: A general method for the synthesis of charged phenyl radicals in the gas phase. J. Am. Chem. Soc. 117, 1393–1393 (1995)CrossRefGoogle Scholar
  5. 5.
    Thoen, K.K., Smith, R.L., Nousiainen, J.J., Nelson, E.D., Kenttamaa, H.I.: Charged phenyl radicals. J. Am. Chem. Soc. 118, 8669 (1996)CrossRefGoogle Scholar
  6. 6.
    Petzold, C.J., Nelson, E.D., Lardin, H.A., Kenttamaa, H.I.: Charge-site effects on the radical reactivity of distonic ions. J. Phys. Chem. A. 106, 9767–9775 (2002)CrossRefGoogle Scholar
  7. 7.
    Yu, S.J., Holliman, C.L., Rempel, D.L., Gross, M.L.: The β-distonic ion from the reaction of pyridine radical cation and ethene: a demonstration of high-pressure trapping in Fourier transform mass spectrometry. J. Am. Chem. Soc. 115, 9676–9682 (1993)CrossRefGoogle Scholar
  8. 8.
    Sorrilha, A.E.P.M., Gozzo, F.C., Pimpim, R.S., Eberlin, M.N.: Multiple stage pentaquadrupole mass spectrometry for generation and characterization of gas-phase ionic species. The case of the PyC2H5+· isomers. J. Am. Soc. Mass Spectrom. 7, 1126–1137 (1996)CrossRefPubMedGoogle Scholar
  9. 9.
    Harman, D.G., Blanksby, S.J.: Trapping of a tert-adamantyl peroxyl radical in the gas phase. Chem. Commun. 859–861 (2006)Google Scholar
  10. 10.
    Moore, B.N., Blanksby, S.J., Julian, R.R.: Ion–molecule reactions reveal facile radical migration in peptides. Chem. Commun. 5015–5017 (2009)Google Scholar
  11. 11.
    Kirk, B.B., Harman, D.G., Blanksby, S.J.: Direct observation of the gas phase reaction of the cyclohexyl radical with dioxygen using a distonic radical ion approach. J. Phys. Chem. A. 114, 1446–1456 (2010)CrossRefPubMedGoogle Scholar
  12. 12.
    Ly, T., Kirk, B.B., Hettiarachchi, P.I., Poad, B.L.J., Trevitt, A.J., da Silva, G., Blanksby, S.J.: Reactions of simple and peptidic alpha-carboxylate radical anions with dioxygen in the gas phase. Phys. Chem. Chem. Phys. 13, 16314–16323 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    Morishetti, K.K., Sripadi, P., Mariappandar, V., Ren, J.: Generation and characterization of distonic dehydrophenoxide radical anions under electrospray and atmospheric pressure chemical ionizations. Int. J. Mass Spectrom. 299, 169–177 (2011)CrossRefGoogle Scholar
  14. 14.
    da Silva, G., Kirk, B.B., Lloyd, C., Trevitt, A.J., Blanksby, S.J.: Concerted HO2 elimination from α-aminoalkylperoxyl free radicals: experimental and theoretical evidence from the gas-phase NH2 CHCO2 + O2 reaction. J. Phys. Chem. Lett. 3, 805–811 (2012)CrossRefPubMedGoogle Scholar
  15. 15.
    Kirk, B.B., Harman, D.G., Kenttamaa, H.I., Trevitt, A.J., Blanksby, S.J.: Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation. Phys. Chem. Chem. Phys. 14, 16719–16730 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    Prendergast, M.B., Cooper, P.A., Kirk, B.B., da Silva, G., Blanksby, S.J., Trevitt, A.J.: Hydroxyl radical formation in the gas phase oxidation of distonic 2-methylphenyl radical cations. Phys. Chem. Chem. Phys. 15, 20577–20584 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    Yates, B.F., Bouma, W.J., Radom, L.: Detection of the prototype phosphonium (CH2PH3), sulfonium (CH2SH2) and chloronium (CH2ClH) ylides by neutralization-reionization mass spectrometry: a theoretical prediction. J. Am. Chem. Soc. 106, 5805–5808 (1984)CrossRefGoogle Scholar
  18. 18.
    Yates, B.F., Bouma, W.J., Radom, L.: Distonic radical cations : guidelines for the assessment of their stability. Tetrahedron. 42, 6225–6234 (1986)CrossRefGoogle Scholar
  19. 19.
    Stirk, K.M., Kiminkinen, L.M., Kenttamaa, H.I.: Ion-molecule reactions of distonic radical cations. Chem. Rev. 92, 1649–1665 (1992)CrossRefGoogle Scholar
  20. 20.
    Williams, P.E., Jankiewicz, B.J., Kenttamaa, H.I.: Properties and reactivity of gaseous distonic radical ions with aryl radical sites. Chem. Rev. 113, 6949–6985 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gryn'ova, G., Marshall, D.L., Blanksby, S.J., Coote, M.L.: Switching radical stability by pH-induced orbital conversion. Nature Chem. 5, 474–481 (2013)CrossRefGoogle Scholar
  22. 22.
    Gryn'ova, G., Coote, M.L.: Origin and scope of long-range stabilizing interactions and associated SOMO-HOMO conversion in distonic radical anions. J. Am. Chem. Soc. 135, 15392–15403 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    Maccarone, A.T., Kirk, B.B., Hansen, C.S., Griffiths, T.M., Olsen, S., Trevitt, A.J., Blanksby, S.J.: Direct observation of photodissociation products from phenylperoxyl radicals isolated in the gas phase. J. Am. Chem. Soc. 135, 9010–9014 (2013)CrossRefPubMedGoogle Scholar
  24. 24.
    Kobayashi, H., Sonoda, T., Takuma, K.: Reactivity of halogen substituents of p-halogenoperfluoroanilines in acid media. J. Fluor. Chem. 27, 1–22 (1985)CrossRefGoogle Scholar
  25. 25.
    Harman, D.G., Blanksby, S.J.: Investigation of the gas phase reactivity of the 1-adamantyl radical using a distonic radical anion approach. Org. Biomol. Chem. 5, 3495–3503 (2007)CrossRefPubMedGoogle Scholar
  26. 26.
    Habicht, S.C., Vinueza, N.R., Archibold, E.F., Penggao, D., Kenttamaa, H.I.: Identification of the carboxylic acid functionality by using electrospray ionization and ion-molecule reactions in a modified linear quadrupole ion trap mass spectrometer. Anal. Chem. 80, 3416–3421 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Hansen, C.S., Kirk, B.B., Blanksby, S.J., O’Hair, R.A.J., Trevitt, A.J.: UV photodissociation action spectroscopy of haloanilinium ions in a linear quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 932–940 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, T.Y., Thompson, M.S., Reilly, J.P.: Peptide photodissociation at 157 nm in a linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 19, 1657–1665 (2005)CrossRefPubMedGoogle Scholar
  30. 30.
    Gronert, S., Pratt, L.M., Mogali, S.: Substituent effects in gas-phase substitutions and eliminations: β-halo substituents. Solvation reverses SN2 substituent effects. J. Am. Chem. Soc. 123, 3081–3091 (2001)CrossRefGoogle Scholar
  31. 31.
    Langevin, P.: A fundamental formula of kinetic theory. Ann. Chem. Phys. 5, 245 (1905)Google Scholar
  32. 32.
    Donald, W.A., Khairallah, G.N., O'Hair, R.A.J.: The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 811–815 (2013)CrossRefPubMedGoogle Scholar
  33. 33.
    Gronert, S.: Estimation of effective ion temperatures in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 845–848 (1998)CrossRefGoogle Scholar
  34. 34.
    Tolmachev, A.V., Vilkov, A.N., Bogdanov, B., Pasa-Tolic, L., Masselon, C.D., Smith, R.D.: Collisional activation of ions in RF ion traps and ion guides: the effective ion temperature treatment. J. Am. Soc. Mass Spectrom. 15, 1616–1629 (2004)CrossRefPubMedGoogle Scholar
  35. 35.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision B.01 Gaussian, Inc., Wallingford, CT, USA (2009)Google Scholar
  36. 36.
    Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101–194118 (2006)CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120, 215–241 (2008)CrossRefGoogle Scholar
  38. 38.
    Ly, T., Zhang, X., Sun, Q., Moore, B., Tao, Y., Julian, R.R.: Rapid, quantitative, and site specific synthesis of biomolecular radicals from a simple photocaged precursor. Chem. Commun. 47, 2835–2837 (2011)CrossRefGoogle Scholar
  39. 39.
    Stirk, K.M., Orlowski, J.C., Leeck, D.T., Kenttämaa, H.I.: The identification of distonic radical cations on the basis of a reaction with dimethyl disulfide. J. Am. Chem. Soc. 114, 8604–8606 (1992)CrossRefGoogle Scholar
  40. 40.
    Grabowski, J.J., Zhang, L.: Dimethyl disulfide: anion-molecule reactions in the gas phase at 300 K. J. Am. Chem. Soc. 111, 1193–1203 (1989)CrossRefGoogle Scholar
  41. 41.
    Kauw, J., Born, M., Ingemann, S., Nibbering, N.M.M.: Gas-phase reactions of isomeric carbene and distonic radical anions derived from methylthioacetonitrile with dimethyl disulfide. Rapid Commun. Mass Spectrom. 10, 1400–1404 (1996)CrossRefGoogle Scholar
  42. 42.
    Koenig, T., Smith, M., Snell, W.: The helium(I) photoelectron spectrum of cyclopentadienone. J. Am. Chem. Soc. 99, 6663–6667 (1977)CrossRefGoogle Scholar
  43. 43.
    Prendergast, M.B., Kirk, B.B., Savee, J.D., Osborn, D.L., Taatjes, C.A., Masters, K.-S., Blanksby, S.J., Da Silva, G., Trevitt, A.J.: Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: a combined neutral and distonic radical study. Phys. Chem. Chem. Phys. 18, 4320–4332 (2016)CrossRefPubMedGoogle Scholar
  44. 44.
    Ormond, T.K., Scheer, A.M., Nimlos, M.R., Robichaud, D.J., Troy, T.P., Ahmed, M., Daily, J.W., Nguyen, T.L., Stanton, J.F., Ellison, G.B.: Pyrolysis of cyclopentadienone: mechanistic insights from a direct measurement of product branching ratios. J. Phys. Chem. A. 119, 7222–7234 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    Carpenter, B.K.: Computational prediction of new mechanisms for the reactions of vinyl and phenyl radicals with molecular oxygen. J. Am. Chem. Soc. 115, 9806–9807 (1993)CrossRefGoogle Scholar
  46. 46.
    Fadden, M.J., Barckholtz, C., Hadad, C.M.: Computational study of the unimolecular decomposition pathways of phenylperoxy radical. J. Phys. Chem. A. 104, 3004–3011 (2000)CrossRefGoogle Scholar
  47. 47.
    Fadden, M.J., Hadad, C.M.: Unimolecular decomposition of the 2-oxepinoxy radical: a key seven-membered ring intermediate in the thermal oxidation of benzene. J. Phys. Chem. A. 104, 8121–8130 (2000)CrossRefGoogle Scholar
  48. 48.
    Carpenter, B.K.: Ring opening of dioxiranylmethyl radical: a caution on the use of G2-type ab initio MO methods for mechanistic analysis. J. Phys. Chem. A. 105, 4585–4588 (2001)CrossRefGoogle Scholar
  49. 49.
    Kroner, S.M., DeMatteo, M.P., Hadad, C.M., Carpenter, B.K.: The gas-phase acidity of 2(3H)-oxepinone: a step toward an experimental heat of formation for the 2-oxepinoxy radical. J. Am. Chem. Soc. 127, 7466–7473 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    Tokmakov, I.V., Kim, G., Kislov, B.B., Mebel, A.M., Lin, M.C.: The reaction of phenyl radical with molecular oxygen: a G2M study of the potential energy surface. J. Phys. Chem. A. 109, 6114–6127 (2005)CrossRefPubMedGoogle Scholar
  51. 51.
    Sebbar, N., Bockhorn, H., Bozzelli, J.W.: Thermodynamic properties of the species resulting from the phenyl radical with O2 reaction system. Int. J. Chem. Kinet. 40, 583–604 (2008)CrossRefGoogle Scholar
  52. 52.
    Grob, C.A., Kaiser, A., Schweizer, T.: The transmission of polar effects. Part II. Helv. Chim. Acta. 60, 391–399 (1977)CrossRefGoogle Scholar
  53. 53.
    Yu, T., Lin, M.C.: Kinetics of the C6H5 + O2 reaction at low temperatures. J. Am. Chem. Soc. 116, 9571–9576 (1994)Google Scholar
  54. 54.
    Tonokura, K., Norikane, T., Koshi, M., Nakano, Y., Nakamichi, S., Goto, M., Hashimoto, S., Kawasaki, M., Anderson, M.P.S., Hurley, M.D., Wallington, T.J.: Cavity ring-down study of the visible absorption Spectrum of the phenyl radical and kinetics of its reactions with cl, Br, Cl2, and O2. J. Phys. Chem. A. 106, 5908–5917 (2002)CrossRefGoogle Scholar
  55. 55.
    Tanaka, K., Ando, M., Sakamoto, Y., Tonokura, K.: Pressure dependence of phenylperoxy radical formation in the reaction of phenyl radical with molecular oxygen. Int. J. Chem. Kinet. 44, 41–50 (2011)CrossRefGoogle Scholar
  56. 56.
    Bright, C.C., Prendergast, M.B., Kelly, P.D., Bezzina, J.P., Blanksby, S.J., da Silva, G., Trevitt, A.J.: Highly efficient gas-phase reactivity of protonated pyridine radicals with propene. Phys. Chem. Chem. Phys. 19, 31072–31084 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Peggy E. Williams
    • 1
    • 2
  • David L. Marshall
    • 1
  • Berwyck L. J. Poad
    • 1
  • Venkateswara R. Narreddula
    • 1
  • Benjamin B. Kirk
    • 3
  • Adam J. Trevitt
    • 3
  • Stephen J. Blanksby
    • 1
  1. 1.Central Analytical Research Facility, Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia
  2. 2.Failure and Materials Analysis Branch, Flight Systems DivisionNaval Surface Warfare Center CraneCraneUSA
  3. 3.School of ChemistryUniversity of WollongongWollongongAustralia

Personalised recommendations