Advertisement

Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry

  • Kelsey A. Morrison
  • Brad K. Bendiak
  • Brian H. Clowers
Research Article

Abstract

Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts.

Graphical Abstract

Keywords

Carbohydrates Glycans Ion mobility Mass spectrometry IM-MS Metal adduction Metal-glycan adducts Glycomics and IMS Transition metal-glycan dimers 

Notes

Acknowledgements

Support for K.A.M. was provided in part by the Defense Threat Reduction Agency under Grant Award Number HDTRA-14-1-0023. The authors received support from the New Faculty Seed Grant from Washington State University.

Supplementary material

13361_2018_1982_MOESM1_ESM.docx (633 kb)
ESM 1 (DOCX 633 kb)

References

  1. 1.
    Armenta, S., Alcala, M., Blanco, M.: A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta. 703, 114–123 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    Baumbach, J.I.: Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem. 384, 1059–1070 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    Fenn, L.S., McLean, J.A.: Biomolecular structural separations by ion mobility-mass spectrometry. Anal. Bioanal. Chem. 391, 905–909 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    Woods, A.S., Ugarov, M., Egan, T., Koomen, J., Gillig, K.J., Fuhrer, K., Gonin, M., Schultz, J.A.: Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal. Chem. 76, 2187–2195 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)CrossRefGoogle Scholar
  6. 6.
    McLean, J.A., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Ion mobility-mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240, 301–315 (2005)CrossRefGoogle Scholar
  7. 7.
    Zheng, X., Smith, R.D., Baker, E.S.: Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr. Opin. Chem. Biol. 42, 111–118 (2018)CrossRefPubMedGoogle Scholar
  8. 8.
    Hinz, C., Liggi, S., Griffin, J.L.: The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr. Opin. Chem. Biol. 42, 42–50 (2018)CrossRefPubMedGoogle Scholar
  9. 9.
    Kliman, M., May, J.C., McLean, J.A.: Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 1811, 935–945 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dwivedi, P., Bendiak, B., Clowers, B.H., Hill, H.H.: Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 18, 1163–1175 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill, H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Morrison, K.A., Clowers, B.H.: Differential fragmentation of mobility-selected glycans via ultraviolet photodissociation and ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1236–1241 (2017)CrossRefPubMedGoogle Scholar
  14. 14.
    Morrison, K.A., Bendiak, B.K., Clowers, B.H.: Enhanced mixture separations of metal adducted tetrasaccharides using frequency encoded ion mobility separations and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 664–677 (2017)CrossRefPubMedGoogle Scholar
  15. 15.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  16. 16.
    Cummings, R.D., Pierce, J.M.: The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lairson, L.L., Henrissat, B., Davies, G.J., Withers, S.G.: Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Solís, D., Bovin, N.V., Davis, A.P., Jiménez-Barbero, J., Romero, A., Roy, R., Smetana, K., Gabius, H.J.: A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta - Gen. Subj. 1850, 186–235 (2015)CrossRefGoogle Scholar
  19. 19.
    Zheng, X., Zhang, X., Schocker, N.S., Renslow, R.S., Orton, D.J., Khamsi, J., Ashmus, R.A., Almeida, I.C., Tang, K., Costello, C.E., Smith, R.D., Michael, K., Baker, E.S.: Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal. Bioanal. Chem. 467–476 (2016)Google Scholar
  20. 20.
    Plasencia, M.D., Isailovic, D., Merenbloom, S.I., Mechref, Y., Clemmer, D.E.: Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Briggs, J., Finch, P., Matulewicz, M., Weigel, H.: Complexes of copper (II), calcium, and other metal ions with carbohydrates: thin-layer ligand-exchange chromatography and determination of relative stabilities of. Carbohydr. Res. 97, 181–188 (1981)CrossRefGoogle Scholar
  22. 22.
    Gyurcsik, B., Nagy, L.: Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord. Chem. Rev. 203, 81–149 (2000)CrossRefGoogle Scholar
  23. 23.
    Cancilla, M.T., Penn, S.G., Carroll, J.A., Lebrilla, C.B.: Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization Fourier transform mass spectrometry. J. Am. Chem. Soc. 118, 6736–6745 (1996)CrossRefGoogle Scholar
  24. 24.
    Kohler, M., Leary, J.A.: LC/MS/MS of carbohydrates with postcolumn addition of metal chlorides using triaxial electrospray probe. Anal. Chem. 67, 3501–3508 (1995)CrossRefPubMedGoogle Scholar
  25. 25.
    Konig, S., Leary, J.A.: Evidence for linkage position determination in cobalt coordinated pentasaccharides using ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 1125–1134 (1998)CrossRefPubMedGoogle Scholar
  26. 26.
    Sible, E.M., Brimmer, S.P., Leary, J.A.: Interaction of first row transition metals with α1-3, α1-6 mannotriose and conserved trimannosyl core oligosaccharides: a comparative electrospray ionization study of doubly and singly charged complexes. J. Am. Soc. Mass Spectrom. 8, 32–42 (1997)CrossRefGoogle Scholar
  27. 27.
    Smith, G., Kaffashan, A., Leary, J.A.: Influence of coordination number and ligand size on the dissociation mechanisms of transition metal monosaccharide complexes. Int. J. Mass Spectrom. 183, 299–310 (1999)CrossRefGoogle Scholar
  28. 28.
    Harvey, D.J.: Ionization and collision-induced fragmentation of N-linked and related carbohydrates using divalent cations. 12, 926–937 (2001)Google Scholar
  29. 29.
    Clowers, B.H., Hill, H.H.: Influence of cation adduction on the separation characteristics of flavonoid diglycoside isomers using dual gate-ion mobility-quadrupole ion trap mass spectrometry. J. Mass Spectrom. 41, 339–351 (2006)CrossRefPubMedGoogle Scholar
  30. 30.
    Schaller-Duke, R.M., Bogala, M.R., Cassady, C.J.: Electron transfer dissociation and collision-induced dissociation of underivatized metallated oligosaccharides. J. Am. Soc. Mass Spectrom. (2018)Google Scholar
  31. 31.
    Morrison, K.A., Siems, W.F., Clowers, B.H.: Augmenting ion trap mass spectrometers using a frequency modulated drift tube ion mobility spectrometer. Anal. Chem. 88, 3121–3129 (2016)CrossRefPubMedGoogle Scholar
  32. 32.
    Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    Damerell, D., Ceroni, A., Maass, K., Ranzinger, R., Dell, A., Haslam, S.M.: The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol. Chem. 393, 1357–1362 (2012)CrossRefPubMedGoogle Scholar
  34. 34.
    Hellerqvist, C.G., Lindberg, B., Pilotti, Å., Lindberg, A.A.: Structural studies of the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella senftenberg. Carbohydr. Res. 16, 297–302 (1971)CrossRefGoogle Scholar
  35. 35.
    Cumming, D.A., Hellerqvist, C.G., Harris-Brandts, M., Michnick, S.W., Carver, J.P., Bendiak, B.: Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 28, 6500–6512 (1989)CrossRefPubMedGoogle Scholar
  36. 36.
    Li, H., Bendiak, B., Kaplan, K., Davis, E., Siems, W.F., Hill, H.H.: Evaluation of ion mobility-mass spectrometry for determining the isomeric heterogeneity of oligosaccharide-alditols derived from bovine submaxillary mucin. Int. J. Mass Spectrom. 352, 9–18 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill, H.H.: Determining the isomeric heterogeneity of neutral oligosaccharide-alditols of bovine submaxillary mucin using negative ion traveling wave ion mobility mass spectrometry. Anal. Chem. 87, 2228–2235 (2015)CrossRefPubMedGoogle Scholar
  38. 38.
    Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F.G., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of glycans. Glycobiology. 25, 1323–1324 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tolmachev, A., Clowers, B., Belov, M., Smith, R.: Coulombic effects in ion mobility spectrometry. Anal. Chem. 81, 4778–4787 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Siems, W.F., Wu, C., Tarver, E.E., Hill, H.H., Larsen, P.R., Mcminn, D.: Measuring the resolving power of ion mobility spectrometers. 66, 4195–4201 (1994)Google Scholar
  41. 41.
    Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23, 161–227 (2004)CrossRefPubMedGoogle Scholar
  42. 42.
    Adamson, J.T., Håkansson, K.: Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals. Anal. Chem. 79, 2901–2910 (2007)CrossRefPubMedGoogle Scholar
  43. 43.
    Zhou, W., Håkansson, K.: Electron capture dissociation of divalent metal-adducted sulfated N-glycans released from bovine thyroid stimulating hormone. J. Am. Soc. Mass Spectrom. 24, 1798–1806 (2013)CrossRefPubMedGoogle Scholar
  44. 44.
    Huang, Y., Dodds, E.D.: Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst. 140, 6912–6921 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    Huang, Y., Dodds, E.D.: Discrimination of isomeric carbohydrates as the electron transfer products of group II cation adducts by ion mobility spectrometry and tandem mass spectrometry. Anal. Chem. 87, 5664–5668 (2015)CrossRefPubMedGoogle Scholar
  46. 46.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefPubMedGoogle Scholar
  47. 47.
    Morrison, K.A., Clowers, B.H.: Contemporary glycomic approaches using ion mobility–mass spectrometry. Curr. Opin. Chem. Biol. 42, 119–129 (2018)CrossRefPubMedGoogle Scholar
  48. 48.
    Rabus, J.M., Abutokaikah, M.T., Ross, R.T., Bythell, B.J.: Sodium-cationized carbohydrate gas-phase fragmentation chemistry: influence of glycosidic linkage position. Phys. Chem. Chem. Phys. 19, 25643–25652 (2017)CrossRefPubMedGoogle Scholar
  49. 49.
    Bythell, B.J., Abutokaikah, M.T., Wagoner, A.R., Guan, S., Rabus, J.M.: Cationized carbohydrate gas-phase fragmentation. J. Am. Soc. Mass Spectrom. 28, 688–703 (2017)CrossRefPubMedGoogle Scholar
  50. 50.
    Loos, M., Gerber, C., Corona, F., Hollender, J., Singer, H.: Accelerated isotope fine structure calculation using pruned transition trees. Anal. Chem. 87, 5738–5744 (2015)CrossRefPubMedGoogle Scholar
  51. 51.
    Chouinard, C.D., Cruzeiro, V.W.D., Roitberg, A.E., Yost, R.A.: Experimental and theoretical investigation of sodiated multimers of steroid epimers with ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 323–331 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Kelsey A. Morrison
    • 1
  • Brad K. Bendiak
    • 2
  • Brian H. Clowers
    • 1
  1. 1.Washington State UniversityPullmanUSA
  2. 2.University of Colorado Health Sciences CenterAuroraUSA

Personalised recommendations