Advertisement

Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

Focus: Honoring Carol V. Robinson's Election to the ational Academy of Sciences: Research Article

Abstract

As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

Graphical Abstract

Keywords

Orbitrap Exactive Instrument development Ion source Membrane protein 

Notes

Acknowledgments

We wish to thank Will Seward of the Chemistry Department Machine Shop for the fabrication of all custom instrumentation, Greg Matthijetz of the Laboratory for Biological Mass Spectrometry for his electronics expertise, Junho Jeon for his design and development of the RF ion funnel, and Alexander Makarov for numerous helpful discussions relating to interfacing drift tube ion mobility to the orbitrap.

Funding Information

Funding for this work was provided by the National Science Foundation (CHE-1707675) and the National Institutes of Health (DP2GM123486 and GM121751-01A1).

References

  1. 1.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014)CrossRefGoogle Scholar
  2. 2.
    von Helden, G., Wyttenbach, T., Bowers, M.T.: Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. Ion Process. 146-147, 349–364 (1995)CrossRefGoogle Scholar
  3. 3.
    Wittmer, D., Chen, Y.H., Luckenbill, B.K., Hill, H.H.: Electrospray ionization ion mobility spectrometry. Anal. Chem. 66, 2348–2355 (1994)CrossRefGoogle Scholar
  4. 4.
    Jurneczko, E., Barran, P.E.: How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 136, 20–28 (2011)CrossRefGoogle Scholar
  5. 5.
    Bleiholder, C., Dupuis, N.F., Wyttenbach, T., Bowers, M.T.: Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 3, 172–177 (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, S.-H., Russell, D.H.: How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J. Am. Soc. Mass Spectrom. 26, 1433–1443 (2015)CrossRefGoogle Scholar
  7. 7.
    Cohen, M.J., Karasek, F.W.: Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J. Chromatogr. Sci. 8, 330–337 (1970)CrossRefGoogle Scholar
  8. 8.
    Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis. Rev. Anal. Chem. 47, 970–983 (1975)CrossRefGoogle Scholar
  9. 9.
    Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., Graham Cooks, R.: The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005)CrossRefGoogle Scholar
  10. 10.
    Makarov, A.A.: Mass spectrometer. US Grant US5886346A (1999)Google Scholar
  11. 11.
    Rose, R.J., Damoc, E., Denisov, E., Makarov, A., Heck, A.J.R.: High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods. 9, 1084 (2012)CrossRefGoogle Scholar
  12. 12.
    Fort, K.L., van de Waterbeemd, M., Boll, D., Reinhardt-Szyba, M., Belov, M.E., Sasaki, E., Zschoche, R., Hilvert, D., Makarov, A.A., Heck, A.J.R.: Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst. 143, 100–105 (2018)CrossRefGoogle Scholar
  13. 13.
    Ibrahim, Y.M., Garimella, S.V.B., Prost, S.A., Wojcik, R., Norheim, R.V., Baker, E.S., Rusyn, I., Smith, R.D.: Development of an ion mobility spectrometry-Orbitrap mass spectrometer platform. Anal. Chem. 88, 12152–12160 (2016)CrossRefGoogle Scholar
  14. 14.
    Keelor, J.D., Zambrzycki, S., Li, A., Clowers, B.H., Fernández, F.M.: Atmospheric pressure drift tube ion mobility–Orbitrap mass spectrometry: initial performance characterization. Anal. Chem. 89, 11301–11309 (2017)CrossRefGoogle Scholar
  15. 15.
    Hagan, N., Goldberg, I., Graichen, A., St. Jean, A., Wu, C., Lawrence, D., Demirev, P.: Ion mobility spectrometry-high resolution LTQ-Orbitrap mass spectrometry for analysis of homemade explosives. J. Am. Soc. Mass Spectrom. 28, 1531–1539 (2017)CrossRefGoogle Scholar
  16. 16.
    Cong, X., Liu, Y., Liu, W., Liang, X., Russell, D.H., Laganowsky, A.: Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016)CrossRefGoogle Scholar
  17. 17.
    Shaffer, S.A., Tang, K., Anderson, G.A., Prior, D.C., Udseth, H.R., Smith, R.D.: A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1813–1817 (1997)CrossRefGoogle Scholar
  18. 18.
    Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K.A., Benesch, J.L.P., Robinson, C.V.: Bayesian Deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015)CrossRefGoogle Scholar
  19. 19.
    Sharon, M.: How far can we go with structural mass spectrometry of protein complexes? J. Am. Soc. Mass Spectrom. 21, 487–500 (2010)CrossRefGoogle Scholar
  20. 20.
    Sharon, M., Robinson, C.V.: The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007)CrossRefGoogle Scholar
  21. 21.
    Kitova, E.N., El-Hawiet, A., Schnier, P.D., Klassen, J.S.: Reliable determinations of protein–ligand interactions by direct ESI-MS measurements. Are we there yet? J. Am. Soc. Mass Spectrom. 23, 431–441 (2012)CrossRefGoogle Scholar
  22. 22.
    Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods. 5, 927 (2008)CrossRefGoogle Scholar
  23. 23.
    Heuvel, R.H.H.v.d., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004)Google Scholar
  24. 24.
    Tosi, P., Fontana, G., Longano, S., Bassi, D.: Transport of an ion beam through an octopole guide operating in the R.F.-only mode. Int. J. Mass Spectrom. Ion Process. 93, 95–105 (1989)CrossRefGoogle Scholar
  25. 25.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  26. 26.
    Laganowsky, A., Reading, E., Allison, T.M., Ulmschneider, M.B., Degiacomi, M.T., Baldwin, A.J., Robinson, C.V.: Membrane proteins bind lipids selectively to modulate their structure and function. Nature. 510, 172–175 (2014)CrossRefGoogle Scholar
  27. 27.
    Robinson, C.V., Chung, E.W., Kragelund, B.B., Knudsen, J., Aplin, R.T., Poulsen, F.M., Dobson, C.M.: Probing the nature of noncovalent interactions by mass spectrometry. A study of protein−CoA ligand binding and assembly. J. Am. Chem. Soc. 118, 8646–8653 (1996)CrossRefGoogle Scholar
  28. 28.
    Benesch, J.L.P., Ruotolo, B.T.: Mass spectrometry: come of age for structural and dynamical biology. Curr. Opin. Chem. Biol. 21, 641–649 (2011)Google Scholar
  29. 29.
    Hall, Z., Politis, A., Robinson, C.V.: Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure. 20, 1596–1609 (2012)CrossRefGoogle Scholar
  30. 30.
    Kaltashov, I.A., Mohimen, A.: Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal. Chem. 77, 5370–5379 (2005)CrossRefGoogle Scholar
  31. 31.
    Li, J., Santambrogio, C., Brocca, S., Rossetti, G., Carloni, P., Grandori, R.: Conformational effects in protein electrospray-ionization mass spectrometry. Mass Spectrom. Rev. 35, 111–122 (2016)CrossRefGoogle Scholar
  32. 32.
    Testa, L., Brocca, S., Grandori, R.: Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal. Chem. 83, 6459–6463 (2011)CrossRefGoogle Scholar
  33. 33.
    Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., Heck, A.J.R.: Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010)CrossRefGoogle Scholar
  34. 34.
    Wyttenbach, T., Pierson, N.A., Clemmer, D.E., Bowers, M.T.: Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014)CrossRefGoogle Scholar
  35. 35.
    Mehmood, S., Allison, T.M., Robinson, C.V.: Mass spectrometry of protein complexes: from origins to applications. Annu. Rev. Phys. Chem. 66, 453–474 (2015)CrossRefGoogle Scholar
  36. 36.
    Laganowsky, A., Reading, E., Hopper, J.T.S., Robinson, C.V.: Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013)CrossRefGoogle Scholar
  37. 37.
    Barrera, N.P., Di Bartolo, N., Booth, P.J., Robinson, C.V.: Micelles protect membrane complexes from solution to vacuum. Science. 321, 243 (2008)CrossRefGoogle Scholar
  38. 38.
    El-baba, T.J., Woodall, D.W., Raab, S.A., Fuller, D.R., Laganowsky, A., Russell, D.H., Clemmer, D.E.: Melting proteins: evidence for multiple stable structures upon thermal denaturation of native ubiquitin from IMS-MS measurements. J. Am. Chem. Soc. 139, 6306–6309 (2017)CrossRefGoogle Scholar
  39. 39.
    Shi, H., Clemmer, D.E.: Evidence for two new solution states of ubiquitin by IMS–MS analysis. J. Phys. Chem. B. 118, 3498–3506 (2014)CrossRefGoogle Scholar
  40. 40.
    Kostyukevich, Y., Kononikhin, A., Popov, I., Nikolaev, E.: Conformational changes of ubiquitin during electrospray ionization as determined by in-ESI source H/D exchange combined with high-resolution MS and ECD fragmentation. J. Am. Soc. Mass Spectrom. 49, 989–994 (2014)CrossRefGoogle Scholar
  41. 41.
    Shi, H., Atlasevich, N., Merenbloom, S.I., Clemmer, D.E.: Solution dependence of the collisional activation of ubiquitin [M+7H](7+) ions. J. Am. Soc. Mass Spectrom. 25, 2000–2008 (2014)CrossRefGoogle Scholar
  42. 42.
    Hall, Z., Robinson, C.V.: Do charge state signatures guarantee protein conformations? J. Am. Soc. Mass Spectrom. 23, 1161–1168 (2012)CrossRefGoogle Scholar
  43. 43.
    Patrick, J.W., Boone, C.D., Liu, W., Conover, G.M., Liu, Y., Cong, X., Laganowsky, A.: Allostery revealed within lipid binding events to membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 108.  https://doi.org/10.1073/pnas.1719813115
  44. 44.
    Gault, J., Donlan, J.A.C., Liko, I., Hopper, J.T.S., Gupta, K., Housden, N.G., Struwe, W.B., Marty, M.T., Mize, T., Bechara, C., Zhu, Y., Wu, B., Kleanthous, C., Belov, M., Damoc, E., Makarov, A., Robinson, C.V.: High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods. 13, 333–336 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations