On the Kendrick Mass Defect Plots of Multiply Charged Polymer Ions: Splits, Misalignments, and How to Correct Them

  • Thierry N. J. Fouquet
  • Robert B. Cody
  • Yuka Ozeki
  • Shinya Kitagawa
  • Hajime Ohtani
  • Hiroaki Sato
Research Article

Abstract

The Kendrick mass defect (KMD) analysis of multiply charged polymeric distributions has recently revealed a surprising isotopic split in their KMD plots—namely a 1/z difference between KMDs of isotopes of an oligomer at charge state z. Relying on the KMD analysis of actual and simulated distributions of poly(ethylene oxide) (PEO), the isotopic split is mathematically accounted for and found to go with an isotopic misalignment in certain cases. It is demonstrated that the divisibility (resp. indivisibility) of the nominal mass of the repeating unit (R) by z is the condition for homolog ions to line up horizontally (resp. misaligned obliquely) in a KMD plot. Computing KMDs using a fractional base unit R/z eventually corrects the misalignments for the associated charge state while using the least common multiple of all the charge states as the divisor realigns all the points at once. The isotopic split itself can be removed by using either a new charge-dependent KMD plot compatible with any fractional base unit or the remainders of KM (RKM) recently developed for low-resolution data all found to be linked in a unified theory. These original applications of the fractional base units and the RKM plots are of importance theoretically to satisfy the basics of a mass defect analysis and practically for a correct data handling of single stage and tandem mass spectra of multiply charged homo- and copolymers.

Graphical Abstract

Keywords

Kendrick mass defect Charge state Multiply charged ions Polymer Fractional base unit Poly(ethylene oxide) KMD Remainders of Kendrick mass High-resolution mass spectrometry 

Notes

Funding Information

T. Fouquet and H. Sato acknowledge the past financial support by the Japan Society for the Promotion of Science (JSPS) under the postdoctoral fellowship for overseas researchers program (FY2015) and a Grant-in-Aid “JSPS KAKENHI” (Grant Number: JP 15F15344).

Supplementary material

13361_2018_1972_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1870 kb)

References

  1. 1.
    Sleno, L.: The use of mass defect in modern mass spectrometry. J. Mass Spectrom. 47, 226–236 (2012)CrossRefGoogle Scholar
  2. 2.
    Meija, J.: Mathematical tools in analytical mass spectrometry. Anal. Bioanal. Chem. 385, 486–499 (2006)CrossRefGoogle Scholar
  3. 3.
    Cho, Y., Ahmed, A., Islam, A., Kim, S.: Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom. Rev. 34, 248–263 (2015)CrossRefGoogle Scholar
  4. 4.
    Van Loon, A., Genuit, W., Pottasch, C., Smelt, S., Noble, P.: Analysis of old master paintings by direct temperature-resolved time-of-flight mass spectrometry: some recent developments. Microchem. J. 126, 406–414 (2016)CrossRefGoogle Scholar
  5. 5.
    Ubukata, M., Jobst, K.J., Reiner, E.J., Reichenbach, S.E., Tao, Q., Hang, J., Wu, Z., Dane, A.J., Cody, R.B.: Non-targeted analysis of electronics waste by comprehensive two-dimensional gas chromatography combined with high-resolution mass spectrometry: using accurate mass information and mass defect analysis to explore the data. J. Chromatogr. A. 1395, 152–159 (2015)CrossRefGoogle Scholar
  6. 6.
    Ortiz, X., Jobst, K.J., Reiner, E.J., Backus, S.M., Peru, K.M., McMartin, D.W., O’Sullivan, G., Taguchi, V.Y., Headley, J.V.: Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 7666–7673 (2014)CrossRefGoogle Scholar
  7. 7.
    Qi, Y., Hempelmann, R., Volmer, D.A.: Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products. Anal. Bioanal. Chem. 408, 4835–4843 (2016)CrossRefGoogle Scholar
  8. 8.
    Dier, T.K.F., Egele, K., Fossog, V., Hempelmann, R., Volmer, D.A.: Enhanced mass defect filtering to simplify and classify complex mixtures of lignin degradation products. Anal. Chem. 88, 1328–1335 (2016)CrossRefGoogle Scholar
  9. 9.
    Vallverdú-Queralt, A., Meudec, E., Eder, M., Lamuela-Raventos, R.M., Sommerer, N., Cheynier, V.: Targeted filtering reduces the complexity of UHPLC-Orbitrap-HRMS data to decipher polyphenol polymerization. Food Chem. 227, 255–263 (2017)CrossRefGoogle Scholar
  10. 10.
    Vallverdú-Queralt, A., Meudec, E., Eder, M., Lamuela-Raventos, R., Sommerer, N., Cheynier, V.: The hidden face of wine polyphenol polymerization highlighted by high-resolution mass spectrometry. ChemistryOpen. 6, 336–339 (2017)CrossRefGoogle Scholar
  11. 11.
    Sato, H., Nakamura, S., Teramoto, K., Sato, T.: Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis. J. Am. Soc. Mass Spectrom. 25, 1346–1355 (2014)CrossRefGoogle Scholar
  12. 12.
    Kendrick, E.: A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 35, 2146–2154 (1963)CrossRefGoogle Scholar
  13. 13.
    Marshall, A.G., Rodgers, R.P.: Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37, 53–59 (2004)CrossRefGoogle Scholar
  14. 14.
    Heppner, R.A., Knox, J.M.: Computer-analysis of high-resolution mass-spectral data from mixtures of organic-compounds. Chem. Biomed. Environ. Instrum. 11, 425–446 (1981)CrossRefGoogle Scholar
  15. 15.
    Hsu, C.S., Qian, K., Chen, Y.C.: An innovative approach to data analysis in hydrocarbon characterization by on-line liquid chromatography-mass spectrometry. Anal. Chim. Acta. 264, 79–89 (1992)CrossRefGoogle Scholar
  16. 16.
    Pourshahian, S.: Mass defect from nuclear physics to mass spectral analysis. J. Am. Soc. Mass Spectrom. 28, 1836–1843 (2017)CrossRefGoogle Scholar
  17. 17.
    Fouquet, T., Sato, H.: Convenient visualization of high-resolution tandem mass spectra of synthetic polymer ions using Kendrick mass defect analysis—the case of polysiloxanes. Rapid Commun. Mass Spectrom. 30, 1361–1364 (2016)CrossRefGoogle Scholar
  18. 18.
    Fouquet, T., Nakamura, S., Sato, H.: MALDI Spiral-TOF high resolution mass spectrometry and Kendrick mass defect analysis applied to the characterization of poly(ethylene-co-vinyl acetate) copolymers. Rapid Commun. Mass Spectrom. 30, 973–981 (2016)CrossRefGoogle Scholar
  19. 19.
    Fouquet, T., Aizawa, H., Sato, H.: Taking MALDI Spiral-TOF high resolution mass spectrometry and mass defect analysis to the next level with ethylene vinyl acetate vinyl alcohol terpolymers. Rapid Commun. Mass Spectrom. 30, 1818–1822 (2016)CrossRefGoogle Scholar
  20. 20.
    Fouquet, T., Mertz, G., Delmee, M., Becker, C., Bardon, J., Sato, H.: The definitive evidence of a plasma copolymerization of alkyl and perfluorinated acrylates using high resolution mass spectrometry and mass defect analysis. Plasma Process. Polym. 13, 862–868 (2016)CrossRefGoogle Scholar
  21. 21.
    Fouquet, T., Torimura, M., Sato, H.: Multi-stage mass spectrometry of poly(vinyl pyrrolidone) and its vinyl succinimide copolymer formed upon exposure to sodium hypochlorite. Mass Spectrom. (Tokyo). 5, A0050 (2016)CrossRefGoogle Scholar
  22. 22.
    Fouquet, T., Sato, H.: Improving the resolution of Kendrick mass defect analysis for polymer ions with fractional base units. Mass Spectrom. (Tokyo). 6, A0055 (2017)CrossRefGoogle Scholar
  23. 23.
    Fouquet, T., Sato, H.: How to choose the best fractional base unit for a high resolution Kendrick mass defect analysis of polymer ions. Rapid Commun. Mass Spectrom. 31, 1067–1072 (2017)CrossRefGoogle Scholar
  24. 24.
    Fouquet, T., Shimada, H., Maeno, K., Ito, K., Ozeki, Y., Kitagawa, S., Ohtani, H., Sato, H.: High-resolution Kendrick mass defect analysis of poly(ethylene oxide)-based non-ionic surfactants and their degradation products. J. Oleo Sci. 66, 1061–1072 (2017)CrossRefGoogle Scholar
  25. 25.
    Fouquet, T., Sato, H.: Extension of the Kendrick mass defect analysis of homopolymers to low resolution and high mass range mass spectra using fractional base units. Anal. Chem. 89, 2682–2686 (2017)CrossRefGoogle Scholar
  26. 26.
    Charles, L.: MALDI of synthetic polymers with labile end-groups. Mass Spectrom. Rev. 33, 523–543 (2014)CrossRefGoogle Scholar
  27. 27.
    Gruendling, T., Weidner, S., Falkenhagen, J., Barner-Kowollik, C.: Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym. Chem. 1, 599–617 (2010)CrossRefGoogle Scholar
  28. 28.
    Pasch, H., Schrepp, W.: MALDI-TOF Mass Spectrometry of Synthetic Polymers. Springer-Verlag, Berlin (2003)CrossRefGoogle Scholar
  29. 29.
    Chendo, C., Charles, L.: Generation of doubly charged species from small synthetic polymers in a high pressure MALDI source. Int. J. Mass Spectrom. 416, 46–52 (2017)CrossRefGoogle Scholar
  30. 30.
    Karas, M., Glückmann, M., Schäfer, J.: Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35, 1–12 (2000)CrossRefGoogle Scholar
  31. 31.
    Cody, R.B., Fouquet, T.: Paper spray and Kendrick mass defect analysis of block and random ethylene oxide/propylene oxide copolymers. Anal. Chim. Acta. 989, 38–44 (2017)CrossRefGoogle Scholar
  32. 32.
    Chan, K.W.S., Cook, K.D.: Extended mass range by multiple charge: sampling quadruply charged quasimolecular ions of poly(ethylene glycol) 4000. J. Mass Spectrum. 18, 423–425 (1983)CrossRefGoogle Scholar
  33. 33.
    Fouquet, T., Satoh, T., Sato, H.: First gut instincts are always right: the resolution required for a mass defect analysis of polymer ions can be as low as oligomeric. Anal. Chem. 90, 2404–2408 (2018)CrossRefGoogle Scholar
  34. 34.
    Fouquet, T., Cody, R.B.: Capabilities of the remainders of nominal Kendrick masses and the referenced Kendrick mass defects for copolymer ions. J. Mass Spectrom. 52, 618–624 (2017)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Thierry N. J. Fouquet
    • 1
  • Robert B. Cody
    • 2
  • Yuka Ozeki
    • 3
  • Shinya Kitagawa
    • 3
  • Hajime Ohtani
    • 3
  • Hiroaki Sato
    • 1
  1. 1.Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.JEOL USA, Inc.PeabodyUSA
  3. 3.Graduate School of Engineering, Life Science and Applied ChemistryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations