Advertisement

A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

  • Ansgar Thomas Kirk
  • Tim Kobelt
  • Hauke Spehlbrink
  • Stefan Zimmermann
Research Article

Abstract

Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region.

Graphical Abstract

Keywords

Corona Ion current Analytical model Ion mobility spectrometry High kinetic energy ion mobility spectrometry 

Notes

Acknowledgments

We thank Maria Allers and Florian Schlottmann for their help during this work.

Funding Information

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ZI 1288/7-1.

References

  1. 1.
    Tabrizchi, M., Khayamian, T., Taj, N.: Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev. Sci. Instrum. 71, 2321–2328 (2000)CrossRefGoogle Scholar
  2. 2.
    Borsdorf, H., Schelhorn, H., Flachowsky, J., Döring, H.-R., Stach, J.: Corona discharge ion mobility spectrometry of aliphatic and aromatic hydrocarbons. Anal. Chim. Acta. 403, 235–242 (2000)CrossRefGoogle Scholar
  3. 3.
    Hill, C.A., Thomas, C.L.P.: A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer. Analyst. 128, 55–60 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    Tabrizchi, M., Abedi, A.: A novel electron source for negative ion mobility spectrometry. Int. J. Mass Spectrom. 218, 75–85 (2002)CrossRefGoogle Scholar
  5. 5.
    Ross, S.K., Bell, A.J.: Reverse flow continuous corona discharge ionisation applied to ion mobility spectrometry. Int. J. Mass Spectrom. 218, L1–L6 (2002)CrossRefGoogle Scholar
  6. 6.
    Roscioli, K.M., Davis, E., Siems, W.F., Mariano, A., Su, W., Guharay, S.K., Hill, H.H.: Modular ion mobility spectrometer for explosives detection using corona ionization. Anal. Chem. 83, 5965–5971 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    Sabo, M., Matejčík, Š.: Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal. Chem. 84, 5327–5334 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    Shumate, C.B., Hill, H.H.: Coronaspray nebulization and ionization of liquid samples for ion mobility spectrometry. Anal. Chem. 61, 601–606 (1989)CrossRefPubMedGoogle Scholar
  9. 9.
    Borsdorf, H., Nazarov, E.G., Eiceman, G.A.: Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques. J. Am. Soc. Mass Spectrom. 13, 1078–1087 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    Borsdorf, H., Nazarov, E.G., Eiceman, G.A.: Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques. Int. J. Mass Spectrom. 232, 117–126 (2004)CrossRefGoogle Scholar
  11. 11.
    Crawford, C.L., Hill, H.H.: Comparison of reactant and analyte ions for 63Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry. Talanta. 107, 225–232 (2013)CrossRefGoogle Scholar
  12. 12.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A.T., Zimmermann, S.: High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Anal. Chem. 86, 7023–7032 (2014)CrossRefPubMedGoogle Scholar
  13. 13.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A.T., Zimmermann, S.: Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS). Anal. Chem. 86, 11841–11846 (2014)CrossRefPubMedGoogle Scholar
  14. 14.
    An, Y., Aliaga-Rossel, R., Choi, P., Gilles, J.-P.: Development of a short pulsed corona discharge ionization source for ion mobility spectrometry. Rev. Sci. Instrum. 76, 85105 (2005)CrossRefGoogle Scholar
  15. 15.
    Kirk, A.T., Grube, D., Kobelt, T., Wendt, C., Zimmermann, S.: A high resolution high kinetic energy ion mobility spectrometer based on a low-discrimination tri-state ion shutter. Anal. Chem. 90, 5603–5611 (2018)Google Scholar
  16. 16.
    Kirk, A.T., Allers, M., Cochems, P., Langejuergen, J., Zimmermann, S.: A compact high resolution ion mobility spectrometer for fast trace gas analysis. Analyst. 138, 5200–5207 (2013)CrossRefGoogle Scholar
  17. 17.
    Kirk, A.T., Zimmermann, S.: An analytical model for the optimum drift voltage of drift tube ion mobility spectrometers with respect to resolving power and detection limits. Int. J. Ion Mobil. Spec. 18, 129–135 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Ansgar Thomas Kirk
    • 1
  • Tim Kobelt
    • 1
  • Hauke Spehlbrink
    • 1
  • Stefan Zimmermann
    • 1
  1. 1.Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement TechnologyLeibniz Universität HannoverHannoverGermany

Personalised recommendations