Advertisement

Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins

  • David J. Foreman
  • Eric T. Dziekonski
  • Scott A. McLuckeyEmail author
Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article

Abstract

A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500–2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa.

Graphical Abstract

Keywords

Ion/ion reactions Intact protein identification Top-down Selective fragmentation 

Notes

Acknowledgements

D.J.F. would like to acknowledge Catherine Rawlins and Daniel Donnelly of the Agar Lab at Northeastern University for helpful discussion regarding top-down sample preparation.

Funding Information

This work was supported by the National Institutes of Health (NIH) under Grant GM R37-45372. Graduate student support for D.J.F. provided by W. Brooks Fortune Fellowship in Analytical Chemistry.

Supplementary material

13361_2018_1965_MOESM1_ESM.docx (341 kb)
ESM 1 (DOCX 340 kb)

References

  1. 1.
    Loo, J., Edmonds, C., Smith, R.: Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science. 248, 201–204 (1990)CrossRefGoogle Scholar
  2. 2.
    Schaffer, L.V., Shortreed, M.R., Cesnik, A.J., Frey, B.L., Solntsev, S.K., Scalf, M., Smith, L.M.: Expanding proteoform identifications in top-down proteomic analyses by constructing proteoform families. Anal. Chem. 90, 1325–1333 (2018)CrossRefGoogle Scholar
  3. 3.
    Khan, A., Eikani, C.K., Khan, H., Iavarone, A.T., Pesavento, J.J.: Characterization of Chlamydomonas reinhardtii core histones by top-down mass spectrometry reveals unique algae-specific variants and post-translational modifications. J. Proteome Res. 17, 23–32 (2018)CrossRefGoogle Scholar
  4. 4.
    Lubeckyj, R.A., McCool, E.N., Shen, X., Kou, Q., Liu, X., Sun, L.: Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. Anal. Chem. 89, 12059–12067 (2017)CrossRefGoogle Scholar
  5. 5.
    Cai, W., Tucholski, T., Chen, B., Alpert, A.J., McIlwain, S., Kohmoto, T., Jin, S., Ge, Y.: Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 89, 5467–5475 (2017)CrossRefGoogle Scholar
  6. 6.
    Kilpatrick, L.E., Kilpatrick, E.L.: Optimizing high-resolution mass spectrometry for the identification of low-abundance post-translational modifications of intact proteins. J. Proteome Res. 16, 3255–3265 (2017)CrossRefGoogle Scholar
  7. 7.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  8. 8.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  9. 9.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefGoogle Scholar
  10. 10.
    Compton, P.D., Zamdborg, L., Thomas, P.M., Kelleher, N.L.: On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011)CrossRefGoogle Scholar
  11. 11.
    Smith, L.M., Kelleher, N.L.: The consortium for top down, P.: proteoform: a single term describing protein complexity. Nat. Methods. 10, 186 (2013)CrossRefGoogle Scholar
  12. 12.
    McCormack, A.L., Somogyi, A., Dongre, A.R., Wysocki, V.H.: Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum mechanical approach. Anal. Chem. 65, 2859–2872 (1993)CrossRefGoogle Scholar
  13. 13.
    Dongré, A.R., Somogyi, Á., Wysocki, V.H.: Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31, 339–350 (1996)CrossRefGoogle Scholar
  14. 14.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005)CrossRefGoogle Scholar
  15. 15.
    Paizs, B., Suhai, S.: Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. J. Am. Soc. Mass Spectrom. 15, 103–113 (2004)CrossRefGoogle Scholar
  16. 16.
    Yu, W., Vath, J.E., Huberty, M.C., Martin, S.A.: Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem. 65, 3015–3023 (1993)CrossRefGoogle Scholar
  17. 17.
    Kish, M.M., Wesdemiotis, C.: Selective cleavage at internal lysine residues in protonated vs. metalated peptides. Int. J. Mass Spectrom. 227, 191–203 (2003)CrossRefGoogle Scholar
  18. 18.
    Gehrig, P.M., Roschitzki, B., Rutishauser, D., Reiland, S., Schlapbach, R.: Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. Rapid Commun. Mass Spectrom. 23, 1435–1445 (2009)CrossRefGoogle Scholar
  19. 19.
    Bleiholder, C., Suhai, S., Harrison, A.G., Paizs, B.: Towards understanding the tandem mass spectra of protonated oligopeptides. 2: the Proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). J. Am. Soc. Mass Spectrom. 22, 1032–1039 (2011)CrossRefGoogle Scholar
  20. 20.
    McGee, W.M., McLuckey, S.A.: The ornithine effect in peptide cation dissociation. J. Mass Spectrom. 48, 856–861 (2013)CrossRefGoogle Scholar
  21. 21.
    Schwartz, B.L., Bursey, M.M.: Some proline substituent effects in the tandem mass spectrum of protonated pentaalanine. Biol. Mass Spectrom. 21, 92–96 (1992)CrossRefGoogle Scholar
  22. 22.
    Vaisar, T., Urban, J.: Probing proline effect in CID of protonated peptides. J. Mass Spectrom. 31, 1185–1187 (1996)CrossRefGoogle Scholar
  23. 23.
    Tsaprailis, G., Somogyi, Á., Nikolaev, E.N., Wysocki, V.H.: Refining the model for selective cleavage at acidic residues in arginine-containing protonated peptides22 dedicated to Bob Squires for his many seminal contributions to mass spectrometry and ion chemistry. Int. J. Mass Spectrom. 195-196, 467–479 (2000)CrossRefGoogle Scholar
  24. 24.
    Sullivan, A.G., Brancia, F.L., Tyldesley, R., Bateman, R., Sidhu, K., Hubbard, S.J., Oliver, S.G., Gaskell, S.J.: The exploitation of selective cleavage of singly protonated peptide ions adjacent to aspartic acid residues using a quadrupole orthogonal time-of-flight mass spectrometer equipped with a matrix-assisted laser desorption/ionization source. Int. J. Mass Spectrom. 210-211, 665–676 (2001)CrossRefGoogle Scholar
  25. 25.
    Gu, C., Tsaprailis, G., Breci, L., Wysocki, V.H.: Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Anal. Chem. 72, 5804–5813 (2000)CrossRefGoogle Scholar
  26. 26.
    Reid, G.E., Wu, J., Chrisman, P.A., Wells, J.M., McLuckey, S.A.: Charge-state-dependent sequence analysis of protonated ubiquitin ions via ion trap tandem mass spectrometry. Anal. Chem. 73, 3274–3281 (2001)CrossRefGoogle Scholar
  27. 27.
    Newton, K.A., Chrisman, P.A., Reid, G.E., Wells, J.M., McLuckey, S.A.: Gaseous apomyoglobin ion dissociation in a quadrupole ion trap: [M + 2H]2+-[M + 21H]21+. Int. J. Mass Spectrom. 212, 359–376 (2001)CrossRefGoogle Scholar
  28. 28.
    Engel, B.J., Pan, P., Reid, G.E., Wells, J.M., McLuckey, S.A.: Charge state dependent fragmentation of gaseous protein ions in a quadrupole ion trap: bovine ferri-, ferro-, and apo-cytochrome c. Int. J. Mass Spectrom. 219, 171–187 (2002)CrossRefGoogle Scholar
  29. 29.
    Hogan, J.M., McLuckey, S.A.: Charge state dependent collision-induced dissociation of native and reduced porcine elastase. J. Mass Spectrom. 38, 245–256 (2003)CrossRefGoogle Scholar
  30. 30.
    Huang, Y., Triscari, J.M., Tseng, G.C., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 77, 5800–5813 (2005)CrossRefGoogle Scholar
  31. 31.
    Huang, Y., Tseng, G.C., Yuan, S., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: A data-mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns. J. Proteome Res. 7, 70–79 (2008)CrossRefGoogle Scholar
  32. 32.
    Cobb, J.S., Easterling, M.L., Agar, J.N.: Structural characterization of intact proteins is enhanced by prevalent fragmentation pathways rarely observed for peptides. J. Am. Soc. Mass Spectrom. 21, 949–959 (2010)CrossRefGoogle Scholar
  33. 33.
    Newton, K.A., Pitteri, S.J., Laskowski, M., McLuckey, S.A.: Effects of single amino acid substitution on the collision-induced dissociation of intact protein ions: turkey ovomucoid third domain. J. Proteome Res. 3, 1033–1041 (2004)CrossRefGoogle Scholar
  34. 34.
    Dongré, A.R., Jones, J.L., Somogyi, Á., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996)CrossRefGoogle Scholar
  35. 35.
    Loo, J.A., Loo, R.R.O., Udseth, H.R., Edmonds, C.G., Smith, R.D.: Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 101–105 (1991)CrossRefGoogle Scholar
  36. 36.
    Haverland, N.A., Skinner, O.S., Fellers, R.T., Tariq, A.A., Early, B.P., LeDuc, R.D., Fornelli, L., Compton, P.D., Kelleher, N.L.: Defining gas-phase fragmentation propensities of intact proteins during native top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1203–1215 (2017)CrossRefGoogle Scholar
  37. 37.
    Ahadi, E., Konermann, L.: Modeling the behavior of coarse-grained polymer chains in charged water droplets: implications for the mechanism of electrospray ionization. J. Phys. Chem. B. 116, 104–112 (2012)CrossRefGoogle Scholar
  38. 38.
    Wang, G., Cole, R.B.: Effect of solution ionic strength on analyte charge state distributions in positive and negative ion electrospray mass spectrometry. Anal. Chem. 66, 3702–3708 (1994)CrossRefGoogle Scholar
  39. 39.
    Pan, P., McLuckey, S.A.: Electrospray ionization of protein mixtures at low pH. Anal. Chem. 75, 1491–1499 (2003)CrossRefGoogle Scholar
  40. 40.
    Pan, P., Gunawardena, H.P., Xia, Y., McLuckey, S.A.: Nanoelectrospray ionization of protein mixtures: solution pH and protein pI. Anal. Chem. 76, 1165–1174 (2004)CrossRefGoogle Scholar
  41. 41.
    Yue, X., Vahidi, S., Konermann, L.: Insights into the mechanism of protein electrospray ionization from salt adduction measurements. J. Am. Soc. Mass Spectrom. 25, 1322–1331 (2014)CrossRefGoogle Scholar
  42. 42.
    National Resource for Translational and Developmental Proteomics Home Page. http://nrtdp.northwestern.edu/. Accessed 3 Mar 2018
  43. 43.
    Wessel, D., Flügge, U.I.: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984)CrossRefGoogle Scholar
  44. 44.
    Xia, Y., Chrisman, P.A., Erickson, D.E., Liu, J., Liang, X., Londry, F.A., Yang, M.J., McLuckey, S.A.: Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal. Chem. 78, 4146–4154 (2006)CrossRefGoogle Scholar
  45. 45.
    Liang, X., Xia, Y., McLuckey, S.A.: Alternately pulsed nanoelectrospray ionization/atmospheric pressure chemical ionization for ion/ion reactions in an electrodynamic ion trap. Anal. Chem. 78, 3208–3212 (2006)CrossRefGoogle Scholar
  46. 46.
    Liang, X., McLuckey, S.A.: Transmission mode ion/ion proton transfer reactions in a linear ion trap. J. Am. Soc. Mass Spectrom. 18, 882–890 (2007)CrossRefGoogle Scholar
  47. 47.
    Emory, J.F., Hassell, K.H., Londry, F.A., McLuckey, S.A.: Transmission mode ion/ion reactions in the radiofrequency-only ion guide of hybrid tandem mass spectrometers. Rapid Commun. Mass Spectrom. 23, 409–418 (2009)CrossRefGoogle Scholar
  48. 48.
    McLuckey, S.A., Reid, G.E., Wells, J.M.: Ion parking during ion/ion reactions in electrodynamic ion traps. Anal. Chem. 74, 336–346 (2002)CrossRefGoogle Scholar
  49. 49.
    Xia, Y., Wu, J., McLuckey, S.A., Londry, F.A., Hager, J.W.: Mutual storage mode ion/ion reactions in a hybrid linear ion trap. J. Am. Soc. Mass Spectrom. 16, 71–81 (2005)CrossRefGoogle Scholar
  50. 50.
    Webb, I.K., Londry, F.A., McLuckey, S.A.: Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer. Rapid Commun. Mass Spectrom. 25, 2500–2510 (2011)CrossRefGoogle Scholar
  51. 51.
    Giglione, C., Boularot, A., Meinnel, T.: Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455–1474 (2004)CrossRefGoogle Scholar
  52. 52.
    Horn, D.M., Zubarev, R.A., McLafferty, F.W.: Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 11, 320–332 (2000)CrossRefGoogle Scholar
  53. 53.
    Reid, G.E., Shang, H., Hogan, J.M., Lee, G.U., McLuckey, S.A.: Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. J. Am. Chem. Soc. 124, 7353–7362 (2002)CrossRefGoogle Scholar
  54. 54.
    Gorman, G.S., Speir, J.P., Turner, C.A., Amster, I.J.: Proton affinities of the 20 common alpha.-amino acids. J. Am. Chem. Soc. 114, 3986–3988 (1992)CrossRefGoogle Scholar
  55. 55.
    Harrison, A.G.: The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 16, 201–217 (1997)CrossRefGoogle Scholar
  56. 56.
    Fellers, R.T., Greer, J.B., Early, B.P., Yu, X., LeDuc, R.D., Kelleher, N.L., Thomas, P.M.: ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics. 15, 1235–1238 (2015)CrossRefGoogle Scholar
  57. 57.
    Meng, F., Cargile, B.J., Miller, L.M., Forbes, A.J., Johnson, J.R., Kelleher, N.L.: Informatics and multiplexing of intact protein identification in bacteria and the archaea. Nat. Biotechnol. 19, 952 (2001)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.SCIEXConcordCanada

Personalised recommendations