Fast Eruption Desorption Ionization for Mass Spectrometric Analysis

  • Xiao-Pan Liu
  • Hao-Yang Wang
  • Guo-Qing Dong
  • Zhong-Quan Li
  • Yin-Long Guo
Short Communication


Fast eruption desorption ionization (FEDI) technique was developed for simple, rapid, and sensitive analysis of various compounds. The FEDI allows three analytical modes each with the unique characteristic. The results demonstrated that non-assisted eruption was suitable for stable and volatile compounds, energetic material (EM)-assisted for nonvolatile molecules especially metal compounds, and solvent-assisted eruption for fragile molecules. High-quality mass spectra with intact ions of analytes were obtained in positive and negative ion modes.

Graphical Abstract


Mass spectrometry Fast eruption desorption ionization Non-assisted eruption EM-assisted eruption Solvent-assisted eruption 


Funding Information

The authors are grateful for the financial supports from the National Key Research and Development Program of China (No. 2016YFC0800704) and the National Science Foundation of China (21532005, 21772227, and 21472228).

Supplementary material

13361_2018_1962_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1794 kb)


  1. 1.
    Yan, X., Li, X., Zhang, C., Xu, Y., Cooks, R.G.: Ambient ionization mass spectrometry measurement of aminotransferase activity. J. Am. Soc. Mass Spectrom. 28, 1175–1181 (2017)CrossRefPubMedGoogle Scholar
  2. 2.
    Gong, X., Shi, S., Gamez, G.: Real-time quantitative analysis of valproic acid in exhaled breath by low temperature plasma ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 678–687 (2017)CrossRefPubMedGoogle Scholar
  3. 3.
    Wu, M.-X., Wang, H.-Y., Zhang, J.-T., Guo, Y.-L.: Multifunctional carbon fiber ionization mass spectrometry. Anal. Chem. 88, 9547–9553 (2016)CrossRefPubMedGoogle Scholar
  4. 4.
    McEwen, C.N., Pagnotti, V.S., Inutan, E.D., Trimpin, S.: New paradigm in ionization: multiply charged ion formation from a solid matrix without a laser or voltage. Anal. Chem. 82, 9164–9168 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    Pagnotti, V.S., Chubatyi, N.D., McEwen, C.N.: Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal. Chem. 83, 3981–3985 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
    Wleklinski, M., Li, Y., Bag, S., Sarkar, D., Narayanan, R., Pradeep, T., et al.: Zero volt paper spray ionization and its mechanism. Anal. Chem. 87, 6786–6793 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    Liu, X.-P., Wang, H.-Y., Zhang, J.-T., Wu, M.-X., Qi, W.-S., Zhu, H., et al.: Direct and convenient mass spectrometry sampling with ambient flame ionization. Sci. Rep. 5, 16893–16901 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen, H., Ouyang, Z., Cooks, R.G.: Thermal production and reactions of organic ions at atmospheric pressure. Angew. Chem. Int. Ed. 45, 3656–3660 (2006)CrossRefGoogle Scholar
  9. 9.
    Stolzenburg, M., Marshall, T.C.: Charge structure and dynamics in thunderstorms. Space Sci. Rev. 137, 355–372 (2008)CrossRefGoogle Scholar
  10. 10.
    Thomas, R.J., Krehbiel, P.R., Rison, W., Edens, H.E., Aulich, G.D., Winn, W.P., et al.: Electrical activity during the 2006 Mount St. Augustine volcanic eruptions. Science. 315, 1097 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Luts, A., Parts, T.-E., Laakso, L., Hirsikko, A., Gronholm, T., Kulmala, M.: Some air electricity phenomena caused by waterfalls: correlative study of the spectra. Atmos. Res. 91, 229–237 (2009)CrossRefGoogle Scholar
  12. 12.
    McCarty, L.S., Whitesides, G.M.: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, A., Zi, Y., Guo, H., Wang, Z.L., Fernandez, F.M.: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12, 481–487 (2017)CrossRefPubMedGoogle Scholar
  14. 14.
    Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A.: The mosaic of surface charge in contact electrification. Science. 333, 308–312 (2011)CrossRefPubMedGoogle Scholar
  15. 15.
    Zeman, S., Jungova, M.: Sensitivity and performance of energetic materials. Propell. Explos. Pyr. 41, 426–451 (2016)CrossRefGoogle Scholar
  16. 16.
    Rice, B.M., Byrd, E.F.C.: Theoretical chemical characterization of energetic materials. J. Mater. Res. 21, 2444–2452 (2006)CrossRefGoogle Scholar
  17. 17.
    Brill, T.B., Brush, P.J., Patil, D.G.: Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH4ClO4. Combust. Flame. 94, 70–76 (1993)CrossRefGoogle Scholar
  18. 18.
    Jacobs, P.W.M., Whitehea, H.M.: Decomposition and combustion of ammonium perchlorate. Chem. Rev. 69, 551–590 (1969)CrossRefGoogle Scholar
  19. 19.
    Zenobi, R., Knochenmuss, R.: Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998)CrossRefGoogle Scholar
  20. 20.
    Wei, J., Buriak, J.M., Siuzdak, G.: Desorption-ionization mass spectrometry on porous silicon. Nature. 399, 243–246 (1999)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina

Personalised recommendations