Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Keishiro Nagoshi
  • Mariko Yamakoshi
  • Kenya Sakamoto
  • Mitsuo Takayama
Research Article


Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M − H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M − Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M − Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M − Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M − Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M − Hα + H]·+ and the amide nitrogen-centered radical ions [M − HN + H]·+, while ab initio calculations indicate that the formation of [M − Hα + H]·+ is energetically most favorable.

Graphical Abstract


MALDI In-source decay Hydrogen-deficient peptide a-Ion 4-Nitro-1-naphthol 



MT gratefully acknowledges the support from the Creation of Innovation Centers for Advanced Interdisciplinary Research Area Program in the Special Coordination Fund for Promoting Science and Technology, and the Grant-in-Aid for Scientific Research (C) (15K05545) from the Japan Ministry of Education, Culture, Sports and Technology.

Supplementary material

13361_2018_1958_MOESM1_ESM.docx (173 kb)
ESM 1 (DOCX 172 kb)


  1. 1.
    Madsen, J.A., Cheng, R.R., Kaoud, T.S., Dalby, K.N., Makarov, D.E., Brodbelt, J.S.: Charge-site dependent dissociation of hydrogen-rich radical peptide cations upon vacuum UV photoexcitation. Chemistry. 18, 5374–5383 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Turecek, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113, 6691–6733 (2013)CrossRefPubMedGoogle Scholar
  4. 4.
    Hopkinson, A.C.: Radical cations of amino acids and peptides: structures and stabilities. Mass Spectrom. Rev. 28, 655–671 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Zubarev, R.F., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  6. 6.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pepin, R., Layton, E.D., Liu, Y., Afonso, C., Turecek, F.: Where does the electron go? Stable and metastable peptide cation radicals formed by electron transfer. J. Am. Soc. Mass Spectrom. 28, 164–181 (2017)CrossRefPubMedGoogle Scholar
  8. 8.
    Brown, R.S., Lennon, J.J.: Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal. Chem. 67, 3990–3999 (1995)CrossRefPubMedGoogle Scholar
  9. 9.
    Takayama, M.: N-Cα bond cleavage of the peptide backbone via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 12, 1044–1049 (2001)CrossRefGoogle Scholar
  10. 10.
    Thompson, M.S., Cui, W., Reilly, J.P.: Fragmentation of singly charged peptide ions by photodissociation at λ=157 nm. Angew. Chem. Int. Ed. 43, 4791–4794 (2004)Google Scholar
  11. 11.
    Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57, 675–679 (1985)CrossRefPubMedGoogle Scholar
  12. 12.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 46, 64–71 (1989)CrossRefGoogle Scholar
  13. 13.
    Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987)CrossRefGoogle Scholar
  14. 14.
    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)Google Scholar
  15. 15.
    Gross, M.L.: Charge-remote fragmentation: an account of research on mechanism and applications. Int. J. Mass Spectrom. 200, 611–624 (2000)CrossRefGoogle Scholar
  16. 16.
    Cui, W., Thompson, M.S., Reilly, J.P.: Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. J. Am. Soc. Mass Spectrom. 16, 1384–1398 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DeGraan-Weber, N., Ward, S.A., Reilly, J.P.: A novel triethylphosphonium charge tag on peptides, derivatization, and fragmentation. J. Am. Soc. Mass Spectrom. 28, 1889–1900 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chu, I.K., Siu, J.C.-K., Lau, J.K.-C., Tang, W.K., Mu, X., Lai, C.-K., Guo, X., Wang, X., Li, N., Xia, Y., Kong, X., Oh, H.B., Ryzhov, V., Turecek, F., Hopkinson, A.C.: Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 390, 24–27 (2015)CrossRefGoogle Scholar
  20. 20.
    Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99–111 (1988)CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson, R.S., Martin, S.A., Biemann, K.: Collision-induced fragmentation of (M+H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Process. 86, 137–154 (1988)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Cui, W., Thomson, M.S., Reilly, J.P.: Structure of α-type ions formed in the 157 nm photodissociation of singly-charged peptide ions. J. Am. Soc. Mass Spectrom. 17, 1315–1321 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang, L., Reilly, J.P.: Radical-driven dissociation of odd-electron peptide radical ions produced in 157 nm photodissociation. J. Am. Soc. Mass Spectrom. 20, 1378–1390 (2009)CrossRefPubMedGoogle Scholar
  24. 24.
    Yin, H., Chacon, A., Porter, N.A., Masterson, D.S.: Free radical-induced site-specific peptide cleavage in the gas phase: low-energy collision-induced dissociation in ESI- and MALLDI mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 807–816 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    Laskin, J., Yang, Z., Lam, C., Chu, I.K.: Charge-remote fragmentation of odd-electron peptide ions. Anal. Chem. 79, 6607–6614 (2007)CrossRefPubMedGoogle Scholar
  26. 26.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Ly, T., Julian, R.R.: Tracking radical migration in large hydrogen deficient peptides with covalent labels: facile movement does not equal indiscriminate fragmentation. J. Am. Soc. Mass Spectrom. 20, 1148–1158 (2009)CrossRefPubMedGoogle Scholar
  28. 28.
    Xu, M., Song, T., Quan, Q., Hao, Q., Fang, D.-C., Siu, C.-K., Chu, I.K.: Effect of the N-terminal basic residue on facile Cα-C bond cleavages of aromatic-containing peptide radical cations. Phys. Chem. Chem. Phys. 23, 5888–5896 (2011)CrossRefGoogle Scholar
  29. 29.
    Mu, X., Song, T., Xu, M., Lai, C.-K., Siu, C.-K., Laskin, J., Chu, I.K.: Discovery and mechanistic studies of facile N-terminal Cα-C bond cleavages in the dissociation of tyrosine-containing peptide radical cations. J. Phys. Chem. B. 118, 4273–4281 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    Chung, T.W., Hui, R., Ledvina, A., Coon, J.J., Turecek, F.: Cascade dissociation of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides. J. Am. Soc. Mass Spectrom. 23, 1336–1350 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ledvina, A.R., Chung, T.W., Hui, R., Coon, J.J., Turecek, F.: Cascade dissociations of peptide cation-radicals. Part 2. Infrared multiphoton dissociation and mechanistic studies of z-ions from pentapeptides. J. Am. Soc. Mass Spectrom. 23, 1351–1363 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Asakawa, D., Takayama, M.: Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices. J. Am. Soc. Mass Spectrom. 22, 1224–1233 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    Asakawa, D., Takayama, M.: Specific cleavage at peptide backbone Cα-C and CO-N bonds during matrix-assisted laser desorption/ionization in-source decay mass spectrometry with 5-nitrosalicylic acid as the matrix. Rapid Commun. Mass Spectrom. 25, 2379–2383 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    Asakawa, D., Takayama, M.: Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J. Phys. Chem. A. 116, 4016–4023 (2012)CrossRefGoogle Scholar
  35. 35.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  36. 36.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)CrossRefGoogle Scholar
  37. 37.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CT (2009)Google Scholar
  38. 38.
    Takayama, M., Tsugita, A.: Does in-source decay occur independent of the ionization process in matrix-assisted laser desorption? Int. J. Mass Spectrom. Ion Process. 181, L1–L6 (1998)CrossRefGoogle Scholar
  39. 39.
    Takayama, M., Tsugita, A.: Sequence information of peptides and proteins with in-source decay in matrix-assisted laser desorption/ionization time-of-flight. Mass Spectrom. 21, 1670–1677 (2000)Google Scholar
  40. 40.
    Wood, G.P.F., Moran, D., Jacob, R., Radom, L.: Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals. J. Phys. Chem. A. 109, 6318–6325 (2005)CrossRefPubMedGoogle Scholar
  41. 41.
    Moore, B.N., Julian, R.R.: Dissociation energies of X-H bonds in amino acids. Phys. Chem. Chem. Phys. 14, 3148–3154 (2012)CrossRefPubMedGoogle Scholar
  42. 42.
    Morrison, H., Migdalof, B.H.: Photochemical hydrogen abstraction by the nitro group. J. Org. Chem. 30, 3996 (1965)CrossRefGoogle Scholar
  43. 43.
    Entwistle, I.D., Gikerson, T., Jojnstone, R.A.W., Telford, R.P.: Rapid catalytic transfer reduction of aromatic nitro compounds to hydroxylamines. Tetrahedron. 34, 213–215 (1978)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Keishiro Nagoshi
    • 1
  • Mariko Yamakoshi
    • 1
  • Kenya Sakamoto
    • 1
  • Mitsuo Takayama
    • 1
  1. 1.Mass Spectrometry Laboratory, Graduate School in NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations