Advertisement

Rapid Assessment of Contaminants and Interferences in Mass Spectrometry Data Using Skyline

  • Matthew J. RardinEmail author
Application Note

Abstract

Proper sample preparation in proteomic workflows is essential to the success of modern mass spectrometry experiments. Complex workflows often require reagents which are incompatible with MS analysis (e.g., detergents) necessitating a variety of sample cleanup procedures. Efforts to understand and mitigate sample contamination are a continual source of disruption with respect to both time and resources. To improve the ability to rapidly assess sample contamination from a diverse array of sources, I developed a molecular library in Skyline for rapid extraction of contaminant precursor signals using MS1 filtering. This contaminant template library is easily managed and can be modified for a diverse array of mass spectrometry sample preparation workflows. Utilization of this template allows rapid assessment of sample integrity and indicates potential sources of contamination.

Graphical Abstract

Keywords

Contaminants Interferences Skyline MS1 filtering Proteomics 

Supplementary material

13361_2018_1940_MOESM1_ESM.xlsx (50 kb)
Supplemental Table S1 (XLSX 49 kb)

References

  1. 1.
    Tong, H., Bell, D., Tabei, K., Siegel, M.M.: Automated data massaging, interpretation, and E-mailing modules for high throughput open access mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1174–1187 (1999)CrossRefGoogle Scholar
  2. 2.
    Weaver, R., Riley, R.J.: Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun. Mass Spectrom. 20, 2559–2564 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    Annesley, T.M.: Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    Furey, A., Moriarty, M., Bane, V., Kinsella, B., Lehane, M.: Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 115, 104–122 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    Verge, K.M., Agnes, G.R.: Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 901–905 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    Keller, B.O., Sui, J., Young, A.B., Whittal, R.M.: Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta. 627, 71–81 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    Schlosser, A., Volkmer-Engert, R.: Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry. J. Mass Spectrom. 38, 523–525 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Burkhart, J.M., Premsler, T., Sickmann, A.: Quality control of nano-LC-MS systems using stable isotope-coded peptides. Proteomics. 11, 1049–1057 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    Bereman, M.S.: Tools for monitoring system suitability in LC MS/MS centric proteomic experiments. Proteomics. 15, 891–902 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    Abbatiello, S.E., Mani, D.R., Schilling, B., Maclean, B., Zimmerman, L.J., Feng, X., Cusack, M.P., Sedransk, N., Hall, S.C., Addona, T., Allen, S., Dodder, N.G., Ghosh, M., Held, J.M., Hedrick, V., Inerowicz, H.D., Jackson, A., Keshishian, H., Kim, J.W., Lyssand, J.S., Riley, C.P., Rudnick, P., Sadowski, P., Shaddox, K., Smith, D., Tomazela, D., Wahlander, A., Waldemarson, S., Whitwell, C.A., You, J., Zhang, S., Kinsinger, C.R., Mesri, M., Rodriguez, H., Borchers, C.H., Buck, C., Fisher, S.J., Gibson, B.W., Liebler, D., Maccoss, M., Neubert, T.A., Paulovich, A., Regnier, F., Skates, S.J., Tempst, P., Wang, M., Carr, S.A.: Design, implementation and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in liquid chromatography-multiple reaction monitoring-MS (LC-MRM-MS). Mol. Cell. Proteomics. 12, 2623–2639 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., MacCoss, M.J.: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 26, 966–968 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schilling, B., Rardin, M.J., MacLean, B.X., Zawadzka, A.M., Frewen, B.E., Cusack, M.P., Sorensen, D.J., Bereman, M.S., Jing, E., Wu, C.C., Verdin, E., Kahn, C.R., Maccoss, M.J., Gibson, B.W.: Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol. Cell. Proteomics. 11, 202–214 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rardin, M.J., Newman, J.C., Held, J.M., Cusack, M.P., Sorensen, D.J., Li, B., Schilling, B., Mooney, S.D., Kahn, C.R., Verdin, E., Gibson, B.W.: Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 110, 6601–6606 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rardin, M.J., Schilling, B., Cheng, L.Y., MacLean, B.X., Sorensen, D.J., Sahu, A.K., MacCoss, M.J., Vitek, O., Gibson, B.W.: MS1 peptide ion intensity chromatograms in MS2 (SWATH) data independent acquisitions. Improving post acquisition analysis of proteomic experiments. Mol. Cell. Proteomics. 14, 2405–2419 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pino, L.K., Searle, B.C., Bollinger, J.G., Nunn, B., MacLean, B., MacCoss, M.J.: The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. (2017).  https://doi.org/10.1002/mas.21540
  16. 16.
    Weber, R.J., Li, E., Bruty, J., He, S., Viant, M.R.: MaConDa: a publicly accessible mass spectrometry contaminants database. Bioinformatics. 28, 2856–2857 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    Bachor, R., Kluczyk, A., Stefanowicz, P., Szewczuk, Z.: Facile synthesis of deuterium-labeled denatonium cation and its application in the quantitative analysis of Bitrex by liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 407, 6557–6561 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Strohalm, M., Hassman, M., Kosata, B., Kodicek, M.: mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Discovery Attribute SciencesAmgenSouth San FranciscoUSA

Personalised recommendations