Advertisement

On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes

  • Xiaoqin Zhong
  • Liang Qiao
  • Géraldine Stauffer
  • Baohong Liu
  • Hubert H. Girault
Research Article

Abstract

A polyimide microfluidic chip with a microhole emitter (Ø 10–12 μm) created on top of a microchannel by scanning laser ablation has been designed for nanoelectrospray ionization (spyhole-nanoESI) to couple microfluidics with mass spectrometry. The spyhole-nanoESI showed higher sensitivity compared to standard ESI and microESI from the end of the microchannel. The limits of detection (LOD) for peptide with the spyhole-nanoESI MS reached 50 pM, which was 600 times lower than that with standard ESI. The present microchip emitter allows the analysis of small volumes of samples. As an example, a small cell lung cancer biomarker, neuron-specific enolase (NSE), was detected by monitoring the transition of its unique peptide with the spyhole-nanoESI MS/MS. NSE at 0.2 nM could be well identified with a signal to noise ratio (S/N) of 50, and thereby its LOD was estimated to be 12 pM. The potential application of the spyhole-nanoESI MS/MS in cancer diagnosis was further demonstrated with the successful detection of 2 nM NSE from 1 μL of human serum. Before the detection, the serum sample spiked with NSE was first depleted with immune spin column, then desalted by centrifugal filter device, and finally digested by trypsin, without any other complicated preparation steps. The concentration matched the real condition of clinical samples. In addition, the microchips can be disposable to avoid any cross contamination. The present technique provides a highly efficient way to couple microfluidics with MS, which brings additional values to various microfluidics and MS-based analysis.

Graphical Abstract

Keywords

Microfluidics Nanoelectrospray ionization Interface Biomarker 

Notes

Acknowledgements

Xiaoqin Zhong would like to acknowledge the China Scholarship Council for her PhD study scholarship. Liang Qiao would like to thank NSFC (81671849) and MOST (2016YFE0132400) for funding support.

Supplementary material

13361_2018_1937_MOESM1_ESM.docx (1024 kb)
ESM 1 (DOCX 1023 kb)

References

  1. 1.
    Liu, K.K., Wu, R.G., Chuang, Y.J., Khoo, H.S., Huang, S.H., Tseng, F.G.: Microfluidic systems for biosensing. Sensors. 10, 6623–6661 (2010)Google Scholar
  2. 2.
    Su, W., Gao, X., Jiang, L., Qin, J.: Microfluidic platform towards point-of-care diagnostics in infectious diseases. J. Chromatogr. A. 1377, 13–26 (2015)Google Scholar
  3. 3.
    Wu, J., Gu, M.: Microfluidic sensing: state of the art fabrication and detection techniques. J. Biomed. Opt. 16, 80901 (2011)CrossRefGoogle Scholar
  4. 4.
    Johnson, M.E., Landers, J.P.: Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis. 25, 3513–3527 (2004)Google Scholar
  5. 5.
    Wang, J.: Electrochemical detection for microscale analytical systems: A review. Talanta. 56, 223–231 (2002)Google Scholar
  6. 6.
    Wang, X., Yi, L., Mukhitov, N., Schrell, A.M., Dhumpa, R., Roper, M.G.: Microfluidics-to-mass spectrometry: A review of coupling methods and applications. J. Chromatogr. A. 0, 98–116 (2015)Google Scholar
  7. 7.
    Freire, S.L.S., Yang, H., Wheeler, A.R.: A practical interface for microfluidics and nanoelectrospray mass spectrometry. Electrophoresis. 29, 1836–1843 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Wilm, M., Mann, M.: Analytical properties of the Nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996)CrossRefPubMedGoogle Scholar
  9. 9.
    Xue, Q., Foret, F., Dunayevskiy, Y.M., Zavracky, P.M., McGruer, N.E., Karger, B.L.: Multichannel microchip electrospray mass spectrometry. Anal. Chem. 69, 426–430 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Rohner, T.C., Rossier, J.S., Girault, H.H.: Polymer microspray with an integrated thick-film microelectrode. Anal. Chem. 73, 5353–5357 (2001)CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, S.H., Sung, W.C., Lee, G.B., Lin, Z.Y., Chen, P.W., Liao, P.C.: A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis. 22, 3972–3977 (2001)CrossRefPubMedGoogle Scholar
  12. 12.
    Schilling, M., Nigge, W., Rudzinski, A., Neyer, A., Hergenroder, R.: A new on-chip ESI nozzle for coupling of MS with microfluidic devices. Lab Chip. 4, 220–224 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Yin, H., Killeen, K., Brennen, R., Sobek, D., Werlich, M., Van De Goor, T.: Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem. 77, 527–533 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Bedair, M.F., Oleschuk, R.D.: Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry. Anal. Chem. 78, 1130–1138 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Lazar, I.M., Ramsey, R.S., Sundberg, S., Ramsey, J.M.: Subattomole-sensitivity microchip Nanoelectrospray source with time-of-flight mass spectrometry detection. Anal. Chem. 71, 3627–3631 (1999)CrossRefPubMedGoogle Scholar
  16. 16.
    Chan, J.H., Timperman, A.T., Qin, D., Aebersold, R.: Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry. Anal. Chem. 71, 4437–4444 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    Bings, N.H., Wang, C., Skinner, C.D., Colyer, C.L., Thibault, P., Harrison, D.J.: Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal. Chem. 71, 3292–3296 (1999)CrossRefPubMedGoogle Scholar
  18. 18.
    Kim, W., Guo, M., Yang, P., Wang, D.: Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry. Anal. Chem. 79, 3703–3707 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    Hoffmann, P., Häusig, U., Schulze, P., Belder, D.: Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer. Angew. Chem. Int. Ed. 46, 4913–4916 (2007)CrossRefGoogle Scholar
  20. 20.
    Xie, J., Miao, Y., Shih, J., Tai, Y.C., Lee, T.D.: Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem. 77, 6947–6953 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    Svedberg, M., Veszelei, M., Axelsson, J., Vangbo, M., Nikolajeff, F.: Poly(dimethylsiloxane) microchip: microchannel with integrated open electrospray tip. Lab Chip. 4, 322–327 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    Gobry, V., Van Oostrum, J., Martinelli, M., Rohner, T.C., Reymond, F., Rossier, J.S., Girault, H.H.: Microfabricated polymer injector for direct mass spectrometry coupling. Proteomics. 2, 405–412 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    Gasilova, N., Qiao, L., Momotenko, D., Pourhaghighi, M.R., Girault, H.H.: Microchip emitter for solid-phase extraction-gradient elution-mass spectrometry. Anal. Chem. 85, 6254–6263 (2013)CrossRefPubMedGoogle Scholar
  24. 24.
    Johnson, D.H., Marangos, P.J., Forbes, J.T., Hainsworth, J.D., Van Welch, R., Hande, K.R., Greco, F.A.: Potential utility of serum neuron-specific enolase levels in small cell carcinoma of the lung. Cancer Res. 44, 5409–5414 (1984)PubMedGoogle Scholar
  25. 25.
    Gasilova, N., Yu, Q., Qiao, L., Girault, H.H.: On-chip spyhole mass spectrometry for droplet-based microfluidics. Angew. Chem. Int. Ed. 53, 4408–4412 (2014)CrossRefGoogle Scholar
  26. 26.
    Qiao, L., Sartor, R., Gasilova, N., Lu, Y., Tobolkina, E., Liu, B., Girault, H.H.: Electrostatic-spray ionization mass spectrometry. Anal. Chem. 84, 7422–7430 (2012)CrossRefPubMedGoogle Scholar
  27. 27.
    Sun, L., Zhu, G., Zhao, Y., Yan, X., Mou, S., Dovichi, N.J.: Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew. Chem. Int. Ed. 52, 13661–13664 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Champion, M.M., Sun, L., Champion, P.A.D., Wojcik, R., Dovichi, N.J.: Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal. Chem. 84, 1617–1622 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Torsetnes, S.B., Løvbak, S.G., Claus, C., Lund, H., Nordlund, M.S., Paus, E., Halvorsen, T.G., Reubsaet, L.: Immunocapture and LC-MS/MS for selective quantification and differentiation of the isozymes of the biomarker neuron-specific enolase in serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 929, 125–132 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Xiaoqin Zhong
    • 1
  • Liang Qiao
    • 2
  • Géraldine Stauffer
    • 1
  • Baohong Liu
    • 2
  • Hubert H. Girault
    • 1
  1. 1.Laboratoire d’Electrochimie Physique et AnalytiqueEcole Polytechnique Fédérale de LausanneSionSwitzerland
  2. 2.Chemistry Department, Fudan UniversityShanghaiChina

Personalised recommendations