Detecting Protein–Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs
Abstract
Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS.
ᅟ
Keywords
Glycolipid Glycan-binding protein Catch-and-release electrospray ionization mass spectrometry Screening Model membranes Picodiscs NanodiscsNotes
Acknowledgements
The authors are grateful for the financial support provided by the Alberta Glycomics Centre (J.S.K.), the Natural Sciences and Engineering Research Council of Canada (G.G.P.), and an Alberta Technology Futures Graduate Student Scholarship (J.L.).
Supplementary material
References
- 1.Malhotra, R.: Membrane glycolipids: functional heterogeneity: a review. Biochem. Anal. Biochem. 1, 108 (2012)CrossRefGoogle Scholar
- 2.Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
- 3.Evans, S.V., MacKenzie, C.R.: Characterization of protein-glycolipid recognition at the membrane bilyer. J. Mol. Recognit. 12, 155–168 (1999)CrossRefGoogle Scholar
- 4.Lingwood, C.A., Manis, A., Mahfoud, R., Khan, F., Binnington, B., Mylvaganam, M.: New aspects of the regulation of glycosphingolipid receptor function. Chem. Phys. Lipids. 163, 27–35 (2010)CrossRefGoogle Scholar
- 5.Shi, J., Yang, T., Kataoka, S., Zhang, Y., Diaz, A.J., Cremer, P.S.: GM1 Clusting inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 129, 5954–5961 (2007)CrossRefGoogle Scholar
- 6.Sanghera, N., Correia, B.E., Correia, J.R., Ludwig, C., Agarwal, S., Nakamura, H.K., Kuwata, K., Samain, E., Gill, A.C., Bonev, B.B., Pinheiro, T.J.: Deciphering the molecular details for the binding of the prion protein to main ganglioside GM1 of neuronal membranes. Chem. Biol. 18, 1422–1431 (2011)Google Scholar
- 7.Lingwood, D., Binnington, B., Rog, T., Vattulainen, I., Grzybek, M., Coskun, U., Lingwood, C.A., Simons, K.: Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262 (2011)Google Scholar
- 8.Czogalla, A., Grzybek, M., Jones, W., Coskun, U.: Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim. Biophys. Acta. 1841, 1049–1059 (2014)CrossRefGoogle Scholar
- 9.Bayburt, T.H., Grinkova, Y.V., Sligar, S.G.: Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002)CrossRefGoogle Scholar
- 10.Zhang, Y., Liu, L., Daneshfar, R., Kitova, E.N., Li, C., Jia, F., Cairo, C.W., Klassen, J.S.: Protein-glycosphingolipid interactions revealed using catch-and-release mass spectrometry. Anal. Chem. 84, 7618–7621 (2012)CrossRefGoogle Scholar
- 11.Popovic, K., Holyoake, J., Pomès, R., Privé, G.G.: Structure of saposin A lipoprotein discs. Prot. Natl. Acad. Sci. 109, 2908–2912 (2012)Google Scholar
- 12.Leney, A.C., Darestani, R.R., Li, J., Nikjah, S., Kitova, E.N., Zou, C., Cairo, C.W., Xiong, Z.J., Privé, G.G., Klassen, J.S.: Picodiscs for facile protein-glycolipid interaction analysis. Anal. Chem. 87, 4402–4408 (2015)Google Scholar
- 13.Borch, J., Torta, F., Sligar, S.G., Roepstorff, P.: Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal. Chem. 80, 6245–6252 (2008)Google Scholar
- 14.Bally, M., Rydell, G.E., Zahn, R., Nasir, W., Eggeling, C., Breimer, M.E., Svensson, L., Hook, F., Larson, G.: Norovirus GII.4 virus-like particles recognize galgctosylceramides in domains of planar supported lipid bilayers. Angew. Chem. Int. Ed. 51, 12020–12024 (2012)CrossRefGoogle Scholar
- 15.Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry. 41, 1742–1751 (2002)CrossRefGoogle Scholar
- 16.Leney, A.C., Fan, X., Kitova, E.K., Klassen, J.S.: Nanodiscs and electrospray ionization mass spectrometry. A novel tool for screening glycolipids against proteins. Anal. Chem. 86, 5271–5277 (2014)CrossRefGoogle Scholar
- 17.Li, J., Fan, X., Kitova, E.N., Zou, C., Cairo, C.W., Eugenio, L., Ng, K.K.S., Xiong, Z.J., Privé, G.G., Klassen, J.S.: Screening glycolipids against proteins in vitro using picodiscs and catch-and-release electrospray ionization mass spectrometry. Anal. Chem. 88, 4742–4750 (2016)Google Scholar
- 18.Nakano, M., Fukuda, M., Kudo, T., Miyazaki, M., Wada, Y., Matsuzaki, N., Endo, H., Handa, T.: Static and dynamic properties of phospholipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 8308–8312 (2009)CrossRefGoogle Scholar
- 19.Brown, R.E., Thompson, T.E.: Spontaneous transfer of ganglioside GM1 between phospholipid vesicles. Biochemistry. 26, 5454–5460 (1987)CrossRefGoogle Scholar
- 20.Brown, R.E.: Spontaneous lipid transfer between organized lipid assemblies. Biochim. Biophys. Acta. 1113, 375–389 (1992)CrossRefGoogle Scholar
- 21.Nichols, J.W.: Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles. Biochemistry. 27, 3925–3931 (1988)CrossRefGoogle Scholar
- 22.Han, L., Kitova, E.N., Li, J., Nikjah, S., Lin, H., Pluvinage, B., Boraston, A.B., Klassen, J.S.: Protein-glycolipid interactions studied in vitro using ESI-MS and nanodiscs. Insights into the mechanisms and energetics of binding. Anal. Chem. 87, 4888–4896 (2015)CrossRefGoogle Scholar
- 23.Zhou, D., Cantu 3rd., C., Sagiv, Y., Schrantz, N., Kulkarni, A.B., Qi, X., Mahuran, D.J., Morales, C.R., Grabowski, G.A., Benlagha, K., Savage, P., Bendelac, A., Teyton, L.: Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science. 303, 523–527 (2004)CrossRefGoogle Scholar
- 24.Locatelli-Hoops, S., Remmel, N., Klingenstein, R., Breiden, B., Rossocha, M., Schoeniger, M., Koenigs, C., Saenger, W., Sandhoff, K.: Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: patient variant saposin A lacks lipid extraction capacity. J. Biol. Chem. 281, 32451–33260 (2006)CrossRefGoogle Scholar
- 25.Han, L., Kitova, E.N., Klassen, J.S.: Detecting protein-glycolipid interactions using glycomicelles and CaR-ESI-MS. J. Am. Soc. Mass Spectrom. 27, 1878–1886 (2016)CrossRefGoogle Scholar
- 26.Sturqill, E.R., Aoki, K., Lopez, P.H., Colacurcio, D., Vajn, K., Lorenzini, I., Majic, S., Yang, W.H., Heffer, M., Tiemeyer, M., Marth, J.D., Schnaar, R.L.: Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology. 22, 1289–1301 (2012)CrossRefGoogle Scholar
- 27.Yagi-Utsumi, M., Kameda, T., Yamaguchi, Y., Kato, K.: NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid β. FEBS Lett. 584, 831–836 (2010)CrossRefGoogle Scholar
- 28.Li, J., Richards, M.R., Bagal, D., Campuzano, I.D.G., Kitova, E.N., Xiong, Z.J., Privé, G.G., Klassen, J.S.: Characterizing the size and composition of saposin A lipoprotein picodiscs. Anal. Chem. 88, 9524–9531 (2016)CrossRefGoogle Scholar
- 29.Han, L., Morales, L.C., Richards, M.R., Kitova, E.N., Sipione, S., Klassen, J.S.: Investigating the influence of membrane composition on protein-glycolipid binding using nanodiscs and proxy ligand ESI-MS. Anal. Chem. 89, 9330–9338 (2018)Google Scholar
- 30.Bayburt, T.H., Sligar, S.G.: Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010)CrossRefGoogle Scholar
- 31.Lin, H., Kitova, E.N., Klassen, J.S.: Measuring positive cooperativity using the direct ESI-MS assay. Cholera toxin B subunit homopentamer binding to GM1 pentasaccharide. J. Am. Soc. Mass Spectrom. 25, 104–110 (2014)CrossRefGoogle Scholar
- 32.Kuziemko, G.M., Stroh, M., Stevens, R.C.: Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry. 35, 6375–6384 (1996)CrossRefGoogle Scholar
- 33.Ikeda, K., Shimizu, T., Taguchi, R.: Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J. Lipid Res. 49, 2678–2689 (2008)CrossRefGoogle Scholar
- 34.Whitehead, S.N., Chan, K.H.N., Gangaraju, S., Slinn, J., Li, J., Hou, S.T.: Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 6, e20808 (2011)CrossRefGoogle Scholar