Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1760–1767 | Cite as

Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213 nm

  • Lance E. Talbert
  • Ryan R. Julian
Focus: Application of Photons and Radicals for MS: Research Article

Abstract

Ultraviolet photodissociation or UVPD is an increasingly popular option for tandem-mass spectrometry experiments. UVPD can be carried out at many wavelengths, and it is important to understand how the results will be impacted by this choice. Here, we explore the utility of 213 nm photons for initiating bond-selective fragmentation. It is found that bonds previously determined to be labile at 266 nm, including carbon-iodine and sulfur-sulfur bonds, can also be cleaved with high selectivity at 213 nm. In addition, many carbon-sulfur bonds that are not subject to direct dissociation at 266 nm can be selectively fragmented at 213 nm. This capability can be used to site-specifically create alaninyl radicals that direct backbone dissociation at the radical site, creating diagnostic d-ions. Furthermore, the additional carbon-sulfur bond fragmentation capability leads to signature triplets for fragmentation of disulfide bonds. Absorption of amide bonds can enhance dissociation of nearby labile carbon-sulfur bonds and can be used for stochastic backbone fragmentation typical of UVPD experiments at shorter wavelengths. Several potential applications of the bond-selective fragmentation chemistry observed at 213 nm are discussed.

Graphical Abstract

Keywords

Laser Photodissociation Excited state Iodine Disulfide Phosphorylation 

Notes

Acknowledgements

The authors gratefully acknowledge assistance from John Syka, Chris Mullen, Chad Weisbrod, Jens Griep-Raming, and Jenny Brodbelt with interfacing the laser with the orbitrap.

Funding Information

The NIH is thanked for financial support (NIGMS grant R01GM107099).

Supplementary material

13361_2018_1934_MOESM1_ESM.docx (614 kb)
ESM 1 (DOCX 614 kb)

References

  1. 1.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43(8), 2757 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wells, J.M., McLuckey, S.A.: Collision-induced dissociation (CID) of peptides and proteins. Biol. Mass Spectrom. 402, 148–185 (2005)Google Scholar
  3. 3.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Special feature: mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 3 s5, 1399–1406 (2000)CrossRefGoogle Scholar
  4. 4.
    Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113(8), 6691–6733 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    Julian, R.: The mechanism behind top-down UVPD experiments: making sense of apparent contradictions. J. Am. Soc. Mass Spectrom. 28(9), 1823–1826 (2017)CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew. Chem. Int. Ed. 48(39), 7130–7137 (2009)CrossRefGoogle Scholar
  7. 7.
    Kim, T.Y., Thompson, M.S., Reilly, J.P.: Peptide Photodissociation at 157 nm in a linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 19(12), 1657–1665 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    Morgan, J.W., Hettick, J.M., Russell, D.H.: Peptide sequencing by MALDI 193-nm photodissociation TOF MS. Biol. Mass Spectrom. 402, 186–209 (2005)Google Scholar
  9. 9.
    Choi, K.M., Yoon, S.H., Sun, M.L., Oh, J.Y., Moon, J.H., Kim, M.S.: Characteristics of photodissociation at 193 nm of singly protonated peptides generated by matrix-assisted laser desorption ionization (MALDI). J. Am. Soc. Mass Spectrom. 17(12), 1643–1653 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    Morrison, L.J., Brodbelt, J.S.: 193 nm ultraviolet photodissociation mass spectrometry of tetrameric protein complexes provides insight into quaternary and secondary protein topology. J. Am. Chem. Soc. 138(34), 10849–10859 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Park, S., Ahn, W.-K., Lee, S., Han, S.Y., Rhee, B.K., Oh, H.B.: Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. Rapid Commun. Mass Spectrom. 23(23), 3609–3620 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    Theisen, A., Yan, B., Brown, J.M., Morris, M., Bellina, B., Barran, P.E.: Use of ultraviolet photodissociation coupled with ion mobility mass spectrometry to determine structure and sequence from drift time selected peptides and proteins. Anal. Chem. 88(20), 9964–9971 (2016)CrossRefGoogle Scholar
  13. 13.
    Wilson, J.J., Brodbelt, J.S.: MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in 4-3 quadrupole ion trap. Anal. Chem. 79(20), 7883–7892 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Hendricks, N.G., Julian, R.R.: Leveraging ultraviolet photodissociation and spectroscopy to investigate peptide and protein three-dimensional structure with mass spectrometry. Analyst. 141(15), 4534–4540 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130(1), 351–358 (2008)CrossRefPubMedGoogle Scholar
  16. 16.
    Diedrich, J.K., Julian, R.R.: Facile identification of photocleavable reactive metabolites and oxidative stress biomarkers in proteins via mass spectrometry. Anal. Bioanal. Chem. 403(8), 2269–2277 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    Agarwal, A., Diedrich, J.K., Julian, R.R.: Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Anal. Chem. 83(17), 6455–6458 (2011)CrossRefPubMedGoogle Scholar
  18. 18.
    Diedrich, J.K., Julian, R.R.: Site-specific radical directed dissociation of peptides at phosphorylated residues. J. Am. Chem. Soc. 130(37), 12212–12213 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    Diedrich, J.K., Julian, R.R.: Site-selective fragmentation of peptides and proteins at quinone-modified cysteine residues investigated by ESI-MS. Anal. Chem. 82(10), 4006–4014 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Regoeczi, E.: Iodine-Labeled Plasma Proteins. CRC Press, Boca Raton (1984)Google Scholar
  21. 21.
    Scotchler, J.W., Robinson, A.B.: Deamidation of glutaminyl residues: dependence on pH, temperature, and ionic strength. Anal. Biochem. 59, 319–322 (1974)CrossRefPubMedGoogle Scholar
  22. 22.
    Sun, Q., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    Nair, D.P., Podgórski, M., Chatani, S., Gong, T., Xi, W., Fenoli, C.R., Bowman, C.N.: The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014)CrossRefGoogle Scholar
  24. 24.
    Girod, M., Sanader, Z., Vojkovic, M., Antoine, R., MacAleese, L., Lemoine, J., Bonacic-Koutecky, V., Dugourd, P.: UV photodissociation of proline-containing peptide ions: insights from molecular dynamics. J. Am. Soc. Mass Spectrom. 26, 432–443 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    Gundry, R.L., White, M.Y., Murray, C.I., Kane, L.A., Fu, Q., Stanley, B.A., Van Eyk, J.E.: Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. In: Current Protocols in Molecular Biology. Hoboken, John Wiley & Sons, Inc. (2001)Google Scholar
  26. 26.
    Klemm, C., Schröder, S., Glückmann, M., Beyermann, M., Krause, E.: Derivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2697–2705 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    Hendricks, N.G., Julian, R.R.: Characterizing gaseous peptide structure with action-EET and simulated annealing. Phys. Chem. Chem. Phys. 17(39), 25822–25827 (2015)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California, RiversideRiversideUSA

Personalised recommendations