Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers

  • Francis Berthias
  • Belkis Maatoug
  • Gary L. Glish
  • Fathi Moussa
  • Philippe Maitre
Research Article


Due to their central role in biochemical processes, fast separation and identification of amino acids (AA) is of importance in many areas of the biomedical field including the diagnosis and monitoring of inborn errors of metabolism and biomarker discovery. Due to the large number of AA together with their isomers and isobars, common methods of AA analysis are tedious and time-consuming because they include a chromatographic separation step requiring pre- or post-column derivatization. Here, we propose a rapid method of separation and identification of sarcosine, a biomarker candidate of prostate cancer, from isomers using differential ion mobility spectrometry (DIMS) interfaced with a tandem mass spectrometer (MS/MS) instrument. Baseline separation of protonated sarcosine from α- and β-alanine isomers can be easily achieved. Identification of DIMS peak is performed using an isomer-specific activation mode where DIMS- and mass-selected ions are irradiated at selected wavenumbers allowing for the specific fragmentation via an infrared multiple photon dissociation (IRMPD) process. Two orthogonal methods to MS/MS are thus added, where the MS/MS(IRMPD) is nothing but an isomer-specific multiple reaction monitoring (MRM) method. The identification relies on the comparison of DIMS-MS/MS(IRMPD) chromatograms recorded at different wavenumbers. Based on the comparison of IR spectra of the three isomers, it is shown that specific depletion of the two protonated α- and β-alanine can be achieved, thus allowing for clear identification of the sarcosine peak. It is also demonstrated that DIMS-MS/MS(IRMPD) spectra in the carboxylic C=O stretching region allow for the resolution of overlapping DIMS peaks.

Graphical Abstract


Tandem mass spectrometry Ion mobility Differential ion mobility Infrared spectroscopy Quantum chemical calculations Amino acid Sarcosine Metabolomic 



We are thankful to the three reviewers for their constructive comments and suggestions.

Supplementary material

13361_2018_1902_MOESM1_ESM.docx (238 kb)
ESM 1 (DOCX 237 kb)


  1. 1.
    Siminska, E., Koba, M.: Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids. 48, 1339–1345 (2016)CrossRefGoogle Scholar
  2. 2.
    Hasim, A., Aili, A.X.Z., Maimaiti, A., Mamtimin, B., Abudula, A., Upur, H.: Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep. 40, 5853–5859 (2013)CrossRefGoogle Scholar
  3. 3.
    Miyagi, Y., Higashiyama, M., Gochi, A., Akaike, M., Ishikawa, T., Miura, T., Saruki, N., Bando, E., Kimura, H., Imamura, F., Moriyama, M., Ikeda, I., Chiba, A., Oshita, F., Imaizumi, A., Yamamoto, H., Miyano, H., Horimoto, K., Tochikubo, O., Mitsushima, T., Yamakado, M., Okamoto, N.: Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 6, e24143 (2011)Google Scholar
  4. 4.
    Maeda, J., Higashiyama, M., Imaizumi, A., Nakayama, T., Yamamoto, H., Daimon, T., Yamakado, M., Imamura, F., Kodama, K.: Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer. 10, 690 (2010)Google Scholar
  5. 5.
    Kim, H.J., Jang, S.H., Ryu, J.S., Lee, J.E., Kim, Y.C., Lee, M.K., Jang, T.W., Lee, S.Y., Nakamura, H., Nishikata, N., Mori, M., Noguchi, Y., Miyano, H., Lee, K.Y.: The performance of a novel amino acid multivariate index for detecting lung cancer: a case control study in Korea. Lung Cancer. 90, 522–527 (2015)CrossRefGoogle Scholar
  6. 6.
    Leichtle, A.B., Nuoffer, J.M., Ceglarek, U., Kase, J., Conrad, T., Witzigmann, H., Thiery, J., Fiedler, G.M.: Serum amino acid profiles and their alterations in colorectal cancer. Metabolomics. 8, 643–653 (2012)CrossRefGoogle Scholar
  7. 7.
    Dietzen, D.J., Weindel, A.L., Carayannopoulos, M.O., Landt, M., Normansell, E.T., Reimschisel, T.E., Smith, C.H.: Rapid comprehensive amino acid analysis by liquid chromatography/tandem mass spectrometry: comparison to cation exchange with post-column ninhydrin detection. Rapid Commun. Mass Spectrom. 22, 3481–3488 (2008)CrossRefGoogle Scholar
  8. 8.
    Prinsen, H., Schiebergen-Bronkhorst, B.G.M., Roeleveld, M.W., Jans, J.J.M., de Sain-van der Velden, M.G.M., Visser, G., van Hasselt, P.M., Verhoeven-Duif, N.M.: Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry. J. Inherit. Metab. Dis. 39, 651–660 (2016)CrossRefGoogle Scholar
  9. 9.
    Khamis, M.M., Adamko, D.J., El-Aneed, A.: Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134 (2017)CrossRefGoogle Scholar
  10. 10.
    Dunn, W.B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J.D., Halsall, A., Haselden, J.N., Nicholls, A.W., Wilson, I.D., Kell, D.B., Goodacre, R., Human Serum Metabolome (HUSERMET) Consortium: Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011)CrossRefGoogle Scholar
  11. 11.
    Martin-Girardeau, A., Renou-Gonnord, M.F.: Optimization of a capillary electrophoresis-electrospray mass spectrometry method for the quantitation of the 20 natural amino acids in childrens blood. J. Chromatogr. B. 742, 163–171 (2000)CrossRefGoogle Scholar
  12. 12.
    Soga, T., Heiger, D.N.: Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 72, 1236–1241 (2000)CrossRefGoogle Scholar
  13. 13.
    Lapthorn, C., Pullen, F., Chowdhry, B.Z.: Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom. Rev. 32, 43–71 (2013)CrossRefGoogle Scholar
  14. 14.
    Paglia, G., Astarita, G.: Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 12, 797–813 (2017)CrossRefGoogle Scholar
  15. 15.
    Fu, Y.L., Xia, Y.Q., Flarakos, J., Tse, F.L.S., Miller, J.D., Jones, E.B., Li, W.K.: Differential mobility spectrometry coupled with multiple ion monitoring in regulated LC-MS/MS bioanalysis of a therapeutic cyclic peptide in human plasma. Anal. Chem. 88, 3655–3661 (2016)CrossRefGoogle Scholar
  16. 16.
    Dwivedi, P., Schultz, A.J., Hill, H.H.: Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int. J. Mass Spectrom. 298, 78–90 (2010)CrossRefGoogle Scholar
  17. 17.
    Schneider, B.B., Nazarov, E.G., Londry, F., Vouros, P., Covey, T.R.: Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom. Rev. 35, 687–737 (2016)CrossRefGoogle Scholar
  18. 18.
    Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J.D., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., Nyati, M.K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X.H., Byun, J., Omenn, G.S., Ghosh, D., Pennathur, S., Alexander, D.C., Berger, A., Shuster, J.R., Wei, J.T., Varambally, S., Beecher, C., Chinnaiyan, A.M.: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 457, 910–914 (2009)CrossRefGoogle Scholar
  19. 19.
    Heger, Z., Rodrigo, M.A.M., Michalek, P., Polanska, H., Masarik, M., Vit, V., Plevova, M., Pacik, D., Eckschlager, T., Stiborova, M., Adam, V.: Sarcosine up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One. 11, (2016)Google Scholar
  20. 20.
    Mirmahdieh, S., Khayamian, T.: Separation of sarcosine and L-alanine isomers using corona discharge ion mobility spectrometry. J. Anal. Chem. 69, 513–518 (2014)CrossRefGoogle Scholar
  21. 21.
    Johnson, P.V., Kim, H.I., Beegle, L.W., Kanik, I.: Electrospray ionization ion mobility spectrometry of amino acids: ion mobilities and a mass-mobility correlation. J. Phys. Chem. A. 108, 5785–5792 (2004)CrossRefGoogle Scholar
  22. 22.
    Martinez-Lozano, P., Rus, J.: Separation of isomers L-alanine and sarcosine in urine by electrospray ionization and tandem differential mobility analysis-mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 1129–1132 (2010)CrossRefGoogle Scholar
  23. 23.
    Beegle, L.W., Kanik, I., Matz, L., Hill, H.H.: Electrospray ionization nigh-resolution ion mobility spectrometry for the detection of organic compounds, 1. Amino acids. Analytical Chemistry. 73, 3028–3034 (2001)Google Scholar
  24. 24.
    Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Separation of leucine and isoleucine by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1279–1284 (1999)CrossRefGoogle Scholar
  25. 25.
    Mac Aleese, L., Simon, A., McMahon, T.B., Ortega, J.M., Scuderi, D., Lemaire, J., Maitre, P.: Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap. Int. J. Mass Spectrom. 249, 14–20 (2006)CrossRefGoogle Scholar
  26. 26.
    MacAleese, L., Maitre, P.: Infrared spectroscopy of organometallic ions in the gas phase: from model to real world complexes. Mass Spectrom. Rev. 26, 583–605 (2007)CrossRefGoogle Scholar
  27. 27.
    Isenberg, S.L., Armistead, P.M., Glish, G.L.: Optimization of peptide separations by differential ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1592–1599 (2014)CrossRefGoogle Scholar
  28. 28.
    Hernandez, O., Isenberg, S., Steinmetz, V., Glish, G.L., Maitre, P.: Probing mobility-selected saccharide isomers: selective ion-molecule reactions and wavelength-specific IR activation. J. Phys. Chem. A. 119, 6057–6064 (2015)CrossRefGoogle Scholar
  29. 29.
    Campbell, M.T., Glish, G.L.: Increased ion transmission for differential ion mobility combined with mass spectrometry by implementation of a flared inlet capillary. J. Am. Soc. Mass Spectrom. 28, 119–124 (2017)CrossRefGoogle Scholar
  30. 30.
    Prazeres, R., Glotin, F., Insa, C., Jaroszynski, D.A., Ortega, J.M.: Two-colour operation of a free-electron laser and applications in the mid-infrared. European Physical Journal D: Atomic, Molecular and Optical Physics. 3, 87–93 (1998)CrossRefGoogle Scholar
  31. 31.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Gaussian, Inc., Wallingford (2009)Google Scholar
  32. 32.
    Eiceman, G.A., Krylov, E.V., Nazarov, E.G., Miller, R.A.: Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal. Chem. 76, 4937–4944 (2004)CrossRefGoogle Scholar
  33. 33.
    Fernandez-Maestre, R., Wu, C., Hill, H.H.: Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions. Rapid Commun. Mass Spectrom. 26, 2211–2223 (2012)CrossRefGoogle Scholar
  34. 34.
    Krylova, N., Krylov, E., Eiceman, G.A., Stone, J.A.: Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J. Phys. Chem. A. 107, 3648–3654 (2003)CrossRefGoogle Scholar
  35. 35.
    Guevremont, R., Purves, R.W.: High field asymmetric waveform ion mobility spectrometry-mass spectrometry: an investigation of leucine enkephalin ions produced by electrospray ionization. J. Am. Soc. Mass Spectrom. 10, 492–501 (1999)CrossRefGoogle Scholar
  36. 36.
    Campbell, J.L., Zhu, M., Hopkins, W.S.: Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers. J. Am. Soc. Mass Spectrom. 25, 1583–1591 (2014)CrossRefGoogle Scholar
  37. 37.
    Liu, C., Le Blanc, J.C.Y., Shields, J., Janiszewski, J.S., Ieritano, C., Ye, G.F., Hawes, G.F., Hopkins, W.S., Campbell, J.L.: Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst. 14, 6897–6903 (2015)CrossRefGoogle Scholar
  38. 38.
    Bouchonnet, S., Hoppilliard, Y.: Proton and sodium-ion affinities of glycine and its sodium-salt in the gas-phase—ab initio calculations. Org. Mass Spectrom. 27, 71–76 (1992)CrossRefGoogle Scholar
  39. 39.
    Jensen, F.: Structure and stability of complexes of glycine and glycine methyl analogs with H+, Li+, and Na+. J. Am. Chem. Soc. 114, 9533–9537 (1992)CrossRefGoogle Scholar
  40. 40.
    Dookeran, N.N., Yalcin, T., Harrison, A.G.: Fragmentation reactions of protonated alpha-amino acids. J. Mass Spectrom. 31, 500–508 (1996)CrossRefGoogle Scholar
  41. 41.
    O'Hair, R.A.J., Broughton, P.S., Styles, M.L., Frink, B.T., Hadad, C.M.: The fragmentation pathways of protonated glycine: a computational study. J. Am. Soc. Mass Spectrom. 11, 687–696 (2000)CrossRefGoogle Scholar
  42. 42.
    Armentrout, P.B., Heaton, A.L., Ye, S.J.: Thermodynamics and mechanisms for decomposition of protonated glycine and its protonated dimer. J. Phys. Chem. A. 115, 11144–11155 (2011)CrossRefGoogle Scholar
  43. 43.
    Meroueh, S.O., Wang, Y.F., Hase, W.L.: Direct dynamics simulations of collision- and surface-induced dissociation of N-protonated glycine. Shattering fragmentation. Journal of Physical Chemistry A. 106, 9983–9992 (2002)CrossRefGoogle Scholar
  44. 44.
    Lintonen, T.P.I., Baker, P.R.S., Suoniemi, M., Ubhi, B.K., Koistinen, K.M., Duchoslav, E., Campbell, J.L., Ekroos, K.: Differential mobility spectrometry-driven shotgun lipidomics. Anal. Chem. 86, 9662–9669 (2014)CrossRefGoogle Scholar
  45. 45.
    Wu, R.H., McMahon, T.B.: Infrared multiple photon dissociation spectroscopy as structural confirmation for GlyGlyGlyH+ and AlaAlaAlaH+ in the gas phase. Evidence for amide oxygen as the protonation site. J. Am. Chem. Soc. 129, 11312 (2007)CrossRefGoogle Scholar
  46. 46.
    Hernandez, O., Paizs, B., Maitre, P.: Rearrangement chemistry of an ions probed by IR spectroscopy. Int. J. Mass Spectrom. 377, 172–178 (2015)CrossRefGoogle Scholar
  47. 47.
    Martens, J., Berden, G., van Outersterp, R.E., Kluijtmans, L.A.J., Engelke, U.F., van Karnebeek, C.D.M., Wevers, R.A., Oomens, J.: Molecular identification in metabolomics using infrared ion spectroscopy. Sci. Rep. 7, 3363 (2017)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Francis Berthias
    • 1
  • Belkis Maatoug
    • 1
  • Gary L. Glish
    • 2
  • Fathi Moussa
    • 3
    • 4
  • Philippe Maitre
    • 1
  1. 1.Laboratoire de Chimie Physique, Bâtiment 349Université Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Department of Chemistry, Caudill LaboratoriesThe University of North Carolina at Chapel HillChapel HillUSA
  3. 3.Université Paris-Sud, LETIAM, Lip(Sys)2, IUT d’OrsayOrsayFrance
  4. 4.Biochemistry and Neuropediatric servicesHospital Group A. Trousseau-La Roche-Guyon, APHPParisFrance

Personalised recommendations