Gold Nanoparticles (AuNPs) as Reactive Matrix for Detection of Trace Levels of HCN in Air by Laser Desorption/Ionization Mass Spectrometry (LDI-MS)

  • Julius Pavlov
  • Athula B. AttygalleEmail author
Research Article


Under direct laser desorption/ionization mass spectrometric conditions, the irradiation of target spots made of gold nanoparticle residues generates a series of peaks at m/z 197, 394, 591… representing Aun ions (n = 1–3). In contrast, spectra recorded from gold nanoparticles directly mixed with an alkali cyanide exhibited an additional peak at m/z 249, indicating an abundant generation of gaseous [Au(CN)2] ions upon irradiation. The relative intensity of the m/z 249 peak surged when the amount of cyanide in the mixture was increased. Most remarkably, a peak at m/z 249 was observed even from neat AuNPs upon irradiation, if a nearby spot, which was not irradiated, happened to bear a cyanide sample. We postulated that traces of HCN emanating from the headspace of aqueous cyanide solution during the sample-plate preparation is sufficient to convert gold to AuCN, which is subsequently detected as [Au(CN)2]. Further experiments demonstrated that the relative intensity of the m/z 249 peak diminishes exponentially as the AuNP spot becomes more distant from the putative HCN source. Eventually, the method was developed as an efficient procedure to detect HCN or alkali cyanides. Using KCN, the detection limits were determined to be below 10 pg of CN per spot. The method also demonstrated that, upon crushing, the seeds or roots of certain fruits and vegetables such as apple, peach, radish, and cassava, but not carrot, release HCN in amounts detectable by this method.

Graphical Abstract


Gold nanoparticles Laser desorption/ionization mass spectrometry Reactive matrix Hydrogen cyanide AuNPs Cyano complexes Cyanogenic compounds Amygdalin 



This work was supported by funds from Stevens Institute of Technology. We thank Dr. Hongjun Wang for the initial gift of gold nanoparticles.

Supplementary material

13361_2018_2131_MOESM1_ESM.docx (3.8 mb)
ESM 1 (DOCX 3.80 mb)


  1. 1.
    Rubo, A., Kellens, R., Reddy, J., Steier, N., Hasenpusch, W.: “Alkali metal cyanides,” in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2006)Google Scholar
  2. 2.
    Collis, G.D., Moles, C.M.E., Mazaiwana, I.: Exploration for Gold by Use of Cyanide Leach Analytical Techniques on Soil Samples in the Greenstone Belts of Zimbabwe. In: Viewing, K., Dempster, E. (eds.) African Mining ’91, p. 99. Elsevier, Dordrecht (1991)Google Scholar
  3. 3.
    Huffman, Jr. C., Mensik, J.D., Riley, L.B.: Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry. Geological Survey Circular 544, U.S. Geological Survey, Washington, D.C., (1968)Google Scholar
  4. 4.
    Zhang, Y., Hess, E.V., Pryhuber, K.G., Dorsey, J.G., Tepperman, K., Elder, R.C.: Gold binding sites in red blood cells. Inorg. Chim. Acta. 229, 271–280 (1995)CrossRefGoogle Scholar
  5. 5.
    Günther, D., Heinrich, C.A.: Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium–argon mixtures as aerosol carrier. J. Anal. At. Spectrom. 14, 1363–1368 (1999)CrossRefGoogle Scholar
  6. 6.
    Canty, A.J., Colton, R., Thomas, I.M.: Electrospray mass spectrometry of inert and labile metal alkyl compounds: a study of methyl and dimethyl derivatives of gold(III), indium(III) and thallium(III). J. Organometallic Chem. 455, 283–289 (1993)CrossRefGoogle Scholar
  7. 7.
    Faraday, M.: The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)Google Scholar
  8. 8.
    Jellinek, J.: Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discuss. 138, 11–35 (2008)CrossRefGoogle Scholar
  9. 9.
    Jung, E., Kim, S., Kim, Y., Seo, S.H., Lee, S.S., Han, M.S., Lee, S.: A colorimetric high-throughput screening method for palladium-catalyzed coupling reactions of aryl iodides using a gold nanoparticle-based iodide-selective probe. Angew. Chem. Int. Ed. 50, 4386–4389 (2011)CrossRefGoogle Scholar
  10. 10.
    Sacks, C.D., Stumpo, K.A.: Gold nanoparticles for enhanced ionization and fragmentation of biomolecules using LDI-MS. J. Mass Spectrom. 53, 1070–1077 (2018)Google Scholar
  11. 11.
    McLean, J.A., Stumpo, K.A., Russell, D.H.: Size-selected (2−10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 127, 5304–5305 (2005)CrossRefGoogle Scholar
  12. 12.
    Stumpo, K.A., Russell, D.H.: Anion effects on ionization efficiency using gold nanoparticles as matrices for LDI-MS. J. Phys. Chem. C. 113, 1641–1647 (2009)CrossRefGoogle Scholar
  13. 13.
    Chau, S.-L., Tang, H.-W., Ng, K.-M.: Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines. Anal. Chim. Acta. 919, 62–69 (2016)CrossRefGoogle Scholar
  14. 14.
    Castellana, E.T., Russell, D.H.: Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett. 7, 3023–3025 (2007)CrossRefGoogle Scholar
  15. 15.
    Abdelhamid, H.N., Wu, H.-F.: Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal. Bioanal. Chem. 408, 4485–4502 (2016)CrossRefGoogle Scholar
  16. 16.
    Schaaff, T.G.: Metastable ions produced in laser desorption of gold : thiolate cluster compounds. Rapid Commun. Mass Spectrom. 17, 2567–2570 (2003)Google Scholar
  17. 17.
    Schaaff, T.G.: Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au : SR cluster compounds. Anal. Chem. 76, 6187–6196 (2004)Google Scholar
  18. 18.
    Marsico, A.: Analysis of gold nanoparticles and their use with laser desorption/ionization mass spectrometry, PhD thesis, University of Massachusetts Amherst. (2017)
  19. 19.
    Harkness, K.M., Balinski, A., McLean, J.A., Cliffel, D.E.: Nanoscale phase segregation of mixed thiolates on gold nanoparticles. Angew. Chem. 123, 10742–10747 (2011)CrossRefGoogle Scholar
  20. 20.
    Ju, S., Yeo, W.-S.: Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis. Nanotechnology. 23, 135701–135707 (2012)CrossRefGoogle Scholar
  21. 21.
    Misiorek, M., Sekuła, J., Ruman, T.: Mass spectrometry imaging of low molecular weight compounds in garlic (Allium sativum L.) with gold nanoparticle enhanced target. Phytochem. Anal. 28, 479–486 (2017)Google Scholar
  22. 22.
    Jones, D.A.: Why are so many food plants cyanogenic. Phytochemistry. 47, 155–162 (1998)CrossRefGoogle Scholar
  23. 23.
    Blum, M.S., Woodring, J.P.: Secretion of benzaldehyde and hydrogen cyanide by the millipede Pachydesmus crassicutis. Science. 138, 512–513 (1962)CrossRefGoogle Scholar
  24. 24.
    Eisner, H.E., Wood, W.F., Eisner, T.: Hydrogen cyanide production in North American and African polydesmoid millipedes. Psyche A J. of Entom. 82, 20–23 (1975)Google Scholar
  25. 25.
    Schildknecht, H., Maschwitz, U., Krauss, D.: Blausäure im Wehrsekret des Erdläufers Pachymerium ferrugineum XXXV. Mitteilung uber Arthropoden-Abwehrstoffe. Naturwissenschaften. 55, 230 (1968)CrossRefGoogle Scholar
  26. 26.
    Randviir, E.P., Banks, C.E.: The latest developments in quantifying cyanide and hydrogen cyanide. Trends in Anal. Chem. 64, 75–85 (2015)Google Scholar
  27. 27.
    Lindsay, A.E., Greenbaum, A.R., O’Hare, D.: Analytical techniques for cyanide in blood and published blood cyanide concentrations from healthy subjects and fire victims. Anal. Chim. Acta. 511, 185–195 (2004)CrossRefGoogle Scholar
  28. 28.
    Ma, J., Dasgupta, P.K.: Recent developments in cyanide detection: a review. Anal. Chim. Acta. 673, 117–125 (2010)CrossRefGoogle Scholar
  29. 29.
    United States Environmental Protection Agency (EPA). Cyanide in waters and extracts using titrimetric and manual spectrophotometric procedures. Method 9014 (1996)Google Scholar
  30. 30.
    United States Environmental Protection Agency (EPA). Potentiometric determination of cyanide in aqueous samples and distillates with ion selective electrode. Method 9213, 1996Google Scholar
  31. 31.
    United States Environmental Protection Agency (EPA). Available cyanide by flow injection, ligand exchange and amperometry. Method OIA-1677, 2004Google Scholar
  32. 32.
    Zain, S.M.S.M, Shaharudin, R., Kamaluddin, M.A., Daud, S.F.: Determination of hydrogen cyanide in residential ambient air using SPME coupled with GC-MS. Atmos. Pollut. Res. 8, 678–685 (2017)Google Scholar
  33. 33.
    Murphy, K.E., Schantz, M.M., Butler, T.A., Benner, B.A., Wood, L.J., Turk, G.C.: Determination of cyanide in blood by isotope dilution gas chromatography–mass spectrometry. Clin. Chem. 52, 458–467 (2006)CrossRefGoogle Scholar
  34. 34.
    Lobger, L.-L., Petersen, H.W., Andersen, J.E.T.: Analysis of cyanide in blood by headspace-isotope-dilution-GC-MS. Anal. Lett. 41, 2564–2586 (2008)CrossRefGoogle Scholar
  35. 35.
    Campanella, B., Biancalana, L., D'Ulivo, L., Onor, M., Bramanti, E., Mester, Z., Pagliano, E.: Determination of total cyanide in soil by isotope dilution GC/MS following pentafluorobenzyl derivatization. Anal. Chim. Acta. 961, 74–81 (2017)CrossRefGoogle Scholar
  36. 36.
    Lacroix, C., Saussereau, E., Boulanger, F., Goullé, J.P.: Online liquid chromatography-tandem mass spectrometry cyanide determination in blood. J. Anal. Toxicol. 35, 143–147 (2011)CrossRefGoogle Scholar
  37. 37.
    Kang, H.-I., Shin, H.-S.: Derivatization method of free cyanide including cyanogen chloride for the sensitive analysis of cyanide in chlorinated drinking water by liquid chromatography-tandem mass spectrometry. Anal. Chem. 87, 975–981 (2015)CrossRefGoogle Scholar
  38. 38.
    Knighton, W.B., Fortner, E.C., Midey, A.J., Viggiano, A.A., Herndon, S.C., Wood, E.C., Kolb, C.E.: HCN detection with a proton transfer mass spectrometer. Int. J. Mass Spectrom. 283, 112–121 (2009)CrossRefGoogle Scholar
  39. 39.
    Enderby, B., Smith, D., Carroll, W., Lenney, W.: Hydrogen cyanide as a biomarker for Pseudomonas Aeruginosa in the breath of children with cystic fibrosis. Pediatr. Pulm. 44, 142–147 (2009)CrossRefGoogle Scholar
  40. 40.
    Gilchrist, F.J., Bright-Thomas, R.J., Jones, A.M., Smith, D., Španěl, P., Webb, A.K., Lenney, W.: Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. J. Breath Res. 7, 026010–026016 (2013)CrossRefGoogle Scholar
  41. 41.
    Španěl, P., Smith, D.D.: Account: on the features, successes and challenges of selected ion flow tube mass spectrometry. Eur. J. Mass Spectrom. 19, 225–246 (2013)Google Scholar
  42. 42.
    Kirk, A.B., Martinelango, P.K., Tian, K., Dutta, A., Smith, E.E., Dasgupta, P.K.: Perchlorate and iodide in dairy and breast milk. Environ. Sci. Technol. 39, 2011–2017 (2005)CrossRefGoogle Scholar
  43. 43.
    Soukup-Hein, R.J., Remsburg, J.W., Dasgupta, P.K., Amstrong, D.W.: A general, positive ion mode ESI-MS approach for the analysis of singly charged anions using dicationic reagent. Anal. Chem. 79, 7346–7352 (2007)CrossRefGoogle Scholar
  44. 44.
    Xu, C., Guo, H., Breitbach, Z.S., Amstrong, D.W.: Mechanism and sensitivity of anion detection using rationally designed unsymmetrical dications in paired ion electrospray ionization (PIESI) mass spectrometry. Anal. Chem. 86, 2665–2672 (2014)CrossRefGoogle Scholar
  45. 45.
    Breitbach, Z.S., Berthhod, A., Huang, K., Amstrong, D.W.: Mass spectrometric detection of trace anions: the evolution of paired ion electrospray ionization (PIESI). Mass Spec. Rev. 35, 201–218 (2016)CrossRefGoogle Scholar
  46. 46.
    Minakata, K., Nozawa, H., Gonmori, K., Suzuki, M., Suzuki, O.: Determination of cyanide, in urine and gastric content, by electrospray ionization tandem mass spectrometry after direct flow injection of dicyanogold. Anal. Chim. Acta. 651, 81–84 (2009)CrossRefGoogle Scholar
  47. 47.
    Minakata, K., Nozawa, H., Gonmori, K., Yamagishi, I., Suzuki, M., Hasegawa, K., Watanabe, K., Suzuki, O.: Determination of cyanide in blood by electrospray ionization tandem mass spectrometry after direct injection of dicyanogold. Anal. Bioanal. Chem. 400, 1945–1951 (2011)CrossRefGoogle Scholar
  48. 48.
    Vasimalai, N., Fernandez-Arguelles, M.T.: Novel one-pot and facile room temperature synthesis of gold nanodots and application as highly sensitive and selective probes for cyanide detection. Nanotechnology. 27, 475505 (2016)CrossRefGoogle Scholar
  49. 49.
    Muthu, M., Chun, S., Wu, H.-F., Duncan, M.W., Gopal, J.: The ongoing evolution of laser desorption/ionization mass spectrometry: some observations on current trends and future directions. J. Mass Spectrom. 53, 525–540 (2018)CrossRefGoogle Scholar
  50. 50.
    Pavlov, J., Attygalle, A.B.: Laser ionization mass spectrometry of inorganic ions, in Mass Spectrometry Handbook, ed. M. S. Lee, Wiley, Hoboken, pp. 1207–1227 (2012)Google Scholar
  51. 51.
    Ogundipe, A., Pavlov, J., Braida, W., Koutsospyros, A., Sen, G., Christodoulatos, C., O’Connor, G.: Evolution of analytical methods to address tungsten speciation. Global NEST J. 11, 308–317 (2009)Google Scholar
  52. 52.
    Pavlov, J., Braida, W., Ogundipe, A., O’Connor, G., Attygalle, A.B.: Generation and detection of gaseous W12O41 and other tungstate anions by laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 1782–1789 (2009)Google Scholar
  53. 53.
    Kruegel, A., Attygalle, A.B.: Elemental sulfur as a versatile low-mass-range calibration standard for laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 112–116 (2010)CrossRefGoogle Scholar
  54. 54.
    Kruegel, A., Pavlov, J., Attygalle, A.B.: Enhancement of laser desorption ionization mass spectrometric signals of CsI by elemental sulfur. Rapid Commun. Mass Spectrom. 27, 763–766 (2013)Google Scholar
  55. 55.
    Zheng, Z., Pavlov, J., Attygalle, A.B.: Detection and imaging of chrome yellow (lead chromate) in latent prints, solid residues, and minerals by laser-desorption-ionization mass spectrometry (LDI-MS). J. Mass Spectrom. 52, 347–352 (2017)Google Scholar
  56. 56.
    Lal, S., Zheng, Z., Pavlov, J., Attygalle, A.B.: Brimstone chemistry under laser light assists mass spectrometric detection and imaging the distribution of arsenic in minerals. Dalton Trans. 47, 8221–8228 (2018)CrossRefGoogle Scholar
  57. 57.
    Ahmed, N., Ahmed, R., Baig, M.A.: Analytical analysis of different karats of gold using laser induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometer (LA-TOF-MS). Plasma Chem. Plasma Process. 38, 207–222 (2018)CrossRefGoogle Scholar
  58. 58.
    Alyssa, M.: Analysis of gold nanoparticles and their use with laser desorption/ionization mass spectrometry. Doctoral Dissertations. 893 (2017).
  59. 59.
    Li, Y.-J., Tseng, Y.-T., Unnikrishnan, B., Huang, C.-C.: Gold-nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine. ACS Appl. Mater. Interfaces. 5, 9161–−9166 (2013)CrossRefGoogle Scholar
  60. 60.
    Weng, C.-I., Cang, J.-S., Chang, J.-Y., Hsiung, T.-M., Unnikrishnan, B., Hung, Y.-L., Tseng, Y.-T., Li, Y.-J., Shen, Y.-W., Huang, C.-C.: Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes. Anal. Chem. 86, 3167–−3173 (2014)CrossRefGoogle Scholar
  61. 61.
    Liu, Y.C., Chiang, C.K., Chang, H.T., Lee, Y.F., Huang, C.-C.: Using a functional nanogold membrane coupled with laser desorption/ionization mass spectrometry to detect lead ions in biofluids. Adv. Funct. Mater. 21, 4448–4455 (2011)CrossRefGoogle Scholar
  62. 62.
    Bastús, N.G., Comenge, J., Puntes, V.: Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 27, 11098–11105 (2011)CrossRefGoogle Scholar
  63. 63.
    Sládková, K., Houška, J., Havel, J.: Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3114–3118 (2009)CrossRefGoogle Scholar
  64. 64.
    Philibert, J.: One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundam. 2, 1–10 (2005)Google Scholar
  65. 65.
    Wang, P., Giese, R.W.: Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J. Chromatogr. A. 1486, 35–41 (2017)CrossRefGoogle Scholar
  66. 66.
    Habashi, F.: Kinetics and mechanism of gold and silver dissolution in cyanide solution. Bulletin 59, State of Montana bureau of mines and geology, Butte, (1967)Google Scholar
  67. 67.
    Validated Test Method 9016: Free cyanide in water, soils and solid wastes by microdiffusion. US EPA Method 9016 (2010)Google Scholar
  68. 68.
    Scoggins, M.W.: Ultraviolet spectrophotometric determination of cyanide ion. Anal. Chem. 44, 1294–1296 (1972)CrossRefGoogle Scholar
  69. 69.
    Clyde, D.D., Warner, M.A.: Spectrophotometric determination of cyanide by use of aqueous potassium iodide and mercury(II) iodide. Analyst. 103, 648–651 (1978)CrossRefGoogle Scholar
  70. 70.
    Nagashima, S.: Spectrophotometric determination of cyanide with γ-picoline and barbituric acid. Anal. Chim. Acta. 91, 303–306 (1977)CrossRefGoogle Scholar
  71. 71.
    Nagashima, S.: Spectrophotometric determination of cyanide with sodium isonicotinate and sodium barbiturate. Anal. Chim. Acta. 99, 197–201 (1978)CrossRefGoogle Scholar
  72. 72.
    Nagashima, S., Ozawa, T.: Spectrophotometric determination of cyanide with isonicotinic acid and barbituric acid. Intern. J. Environ. Anal. Chem. 10, 99–106 (1981)Google Scholar
  73. 73.
    Cacace, D., Ashbaugh, H., Kouri, N., Bledsoe, S., Lancaster, S., Chalk, S.: Spectrophotometric determination of aqueous cyanide using a revised phenolphthalein method. Anal. Chim. Acta. 589, 137–141 (2007)CrossRefGoogle Scholar
  74. 74.
    Epstein, J.: Estimation of microquantities of cyanide. Anal. Chem. 19, 272–274 (1947)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Center for Mass Spectrometry, Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenUSA

Personalised recommendations