Advertisement

Applications of Direct Injection Soft Chemical Ionisation-Mass Spectrometry for the Detection of Pre-blast Smokeless Powder Organic Additives

  • Ramón González-MéndezEmail author
  • Chris A. Mayhew
Research Article

Abstract

Analysis of smokeless powders is of interest from forensics and security perspectives. This article reports the detection of smokeless powder organic additives (in their pre-detonation condition), namely the stabiliser diphenylamine and its derivatives 2-nitrodiphenylamine and 4-nitrodiphenylamine, and the additives (used both as stabilisers and plasticisers) methyl centralite and ethyl centralite, by means of swab sampling followed by thermal desorption and direct injection soft chemical ionisation-mass spectrometry. Investigations on the product ions resulting from the reactions of the reagent ions H3O+ and O2+ with additives as a function of reduced electric field are reported. The method was comprehensively evaluated in terms of linearity, sensitivity and precision. For H3O+, the limits of detection (LoD) are in the range of 41–88 pg of additive, for which the accuracy varied between 1.5 and 3.2%, precision varied between 3.7 and 7.3% and linearity showed R2 ≥ 0.9991. For O2+, LoD are in the range of 72 to 1.4 ng, with an accuracy of between 2.8 and 4.9% and a precision between 4.5 and 8.6% and R2 ≥ 0.9914. The validated methodology was applied to the analysis of commercial pre-blast gun powders from different manufacturers.

Graphical Abstract

Keywords

Soft chemical ionisation-mass spectrometry SCIMS Proton transfer reaction mass spectrometry PTR-MS Smokeless powders Smokeless powder additives 

Notes

Acknowledgements

RGM is an early-stage researcher who acknowledges the support of the PIMMS Initial Training Network which in turn is supported by the European Commission’s Seventh Framework Programme under Grant Agreement Number 287382.

References

  1. 1.
    Heramb, R. M.; McCord, B. R, The manufacture of smokeless powders and their forensic analysis: a brief review. Forensic Sci. Commun 2002, 4 (2)Google Scholar
  2. 2.
    Bender, E. C., Analysis of low explosives. In Forensic Investigation of Explosions, Taylor & Francis Ltd., Bristol, PA: 1998Google Scholar
  3. 3.
    Schwoeble, A., Exline, D.L.: Current methods in forensic gunshot residue analysis. CRC Press (2000)Google Scholar
  4. 4.
    Chang, K.H., Jayaprakash, P.T., Yew, C.H., Abdullah, A.F.L.: Gunshot residue analysis and its evidential values: a review. Aust J Forensic Sci. 45(1), 3–23 (2013)Google Scholar
  5. 5.
    MacCrehan, W.A., Smith, K.D., Rowe, W.F.: Sampling protocols for the detection of smokeless powder residues using capillary electrophoresis. J. Forensic Sci. 43(1), 119–124 (1998)Google Scholar
  6. 6.
    Abrego, Z., Ugarte, A., Unceta, N., Fernández-Isla, A., Goicolea, M.A., Barrio, R.J.: Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry. Anal. Chem. 84(5), 2402–2409 (2012)Google Scholar
  7. 7.
    Dennis, D.-M.K., Williams, M.R., Sigman, M.E.: Assessing the evidentiary value of smokeless powder comparisons. Forensic Sci. Int. 259, 179–187 (2016)Google Scholar
  8. 8.
    Reese, K.L., Jones, A.D., Smith, R.W.: Characterization of smokeless powders using multiplexed collision-induced dissociation mass spectrometry and chemometric procedures. Forensic Sci. Int. 272, 16–27 (2017)Google Scholar
  9. 9.
    Goudsmits, E., Sharples, G.P., Birkett, J.W.: Recent trends in organic gunshot residue analysis. TrAC Trends Anal. Chem. 74, 46–57 (2015)Google Scholar
  10. 10.
    Taudte, R.V., Beavis, A., Blanes, L., Cole, N., Doble, P., Roux, C.: Detection of gunshot residues using mass spectrometry. Biomed. Res. Int. 2014, 16 (2014)Google Scholar
  11. 11.
    Dalby, O., Butler, D., Birkett, J.W.: Analysis of gunshot residue and associated materials—a review. J. Forensic Sci. 55(4), 924–943 (2010)Google Scholar
  12. 12.
    Joshi, M., Rigsby, K., Almirall, J.R.: Analysis of the headspace composition of smokeless powders using GC–MS, GC-μECD and ion mobility spectrometry. Forensic Sci. Int. 208(1–3), 29–36 (2011)Google Scholar
  13. 13.
    Meng, H., Caddy, B.: Gunshot residue analysis—a review. J. Forensic Sci. 42(4), 553–570 (1997)Google Scholar
  14. 14.
    Mach, M., Pallos, A., Jones, P.: Feasibility of gunshot residue detection via its organic constituents. Part I: analysis of smokeless powders by combined gas chromatography-chemical ionization mass spectrometry. J. Forensic Sci. 23(3), 433–445 (1978)Google Scholar
  15. 15.
    Perez, J.J., Watson, D.A., Levis, R.J.: Classification of gunshot residue using laser electrospray mass spectrometry and offline multivariate statistical analysis. Anal. Chem. 88(23), 11390–11398 (2016)Google Scholar
  16. 16.
    MacCrehan, W.A., Bedner, M.: Development of a smokeless powder reference material for propellant and explosives analysis. Forensic Sci. Int. 163(1–2), 119–124 (2006)Google Scholar
  17. 17.
    Cascio, O., Trettene, M., Bortolotti, F., Milana, G., Tagliaro, F.: Analysis of organic components of smokeless gunpowders: high-performance liquid chromatogaphy vs. micellar electrokinetic capillary chromatography. Electrophoresis. 25(10–11), 1543–1547 (2004)Google Scholar
  18. 18.
    Meng, H.-h., Caddy, B.: Detection of N,N′-diphenyl-N,N′-diethylurea (ethyl centralite) in gunshot residues using high-performance liquid chromatography with fluorescence detection. Analyst. 120(6), 1759–1762 (1995)Google Scholar
  19. 19.
    López-López, M., Bravo, J.C., García-Ruiz, C., Torre, M.: Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models. Talanta. 103, 214–220 (2013)Google Scholar
  20. 20.
    Laza, D., Nys, B., Kinder, J.D., Kirsch-De Mesmaeker, A., Moucheron, C.: Development of a quantitative LC-MS/MS method for the analysis of common propellant powder stabilizers in gunshot residue. J. Forensic Sci. 52(4), 842–850 (2007)Google Scholar
  21. 21.
    Wu, Z., Tong, Y., Yu, J., Zhang, X., Yang, C., Pan, C., Deng, X., Wen, Y., Xu, Y., The utilization of MS-MS method in detection of GSRs. J. Forensic Sci. 46 (3), 495–501 (2001)Google Scholar
  22. 22.
    Thomas, J.L., Lincoln, D., McCord, B.R.: Separation and detection of smokeless powder additives by ultra performance liquid chromatography with tandem mass spectrometry (UPLC/MS/MS). J. Forensic Sci. 58(3), 609–615 (2013)Google Scholar
  23. 23.
    López-López, M., Ferrando, J.L., García-Ruiz, C.: Comparative analysis of smokeless gunpowders by Fourier transform infrared and Raman spectroscopy. Anal. Chim. Acta. 717, 92–99 (2012)Google Scholar
  24. 24.
    Zeichner, A., Eldar, B., Glattstein, B., Koffman, A., Tamiri, T., Muller, D.: Vacuum collection of gunpowder residues from clothing worn by shooting suspects, and their analysis by GC/TEA, IMS, and GC/MS. J. Forensic Sci. 48(5), 961–972 (2003)Google Scholar
  25. 25.
    Cruces-Blanco, C., Gámiz–Gracia, L., García-Campaña, A.M.: Applications of capillary electrophoresis in forensic analytical chemistry. TrAC Trends Anal. Chem. 26(3), 215–226 (2007)Google Scholar
  26. 26.
    Bernal Morales, E., Revilla Vázquez, A.L.: Simultaneous determination of inorganic and organic gunshot residues by capillary electrophoresis. J. Chromatogr. A. 1061(2), 225–233 (2004)Google Scholar
  27. 27.
    West, C., Baron, G., Minet, J.J.: Detection of gunpowder stabilizers with ion mobility spectrometry. Forensic Sci. Int. 166(2–3), 91–101 (2007)Google Scholar
  28. 28.
    Joshi, M., Delgado, Y., Guerra, P., Lai, H., Almirall, J.R.: Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer. Forensic Sci. Int. 188(1–3), 112–118 (2009)Google Scholar
  29. 29.
    Scherperel, G., Reid, G.E., Waddell Smith, R.: Characterization of smokeless powders using nanoelectrospray ionization mass spectrometry (nESI-MS). Anal. Bioanal. Chem. 394(8), 2019–2028 (2009)Google Scholar
  30. 30.
    Wu, Z., Tong, Y., Yu, J., Zhang, X., Pan, C., Deng, X., Xu, Y., Wen, Y.: Detection of N,N [prime or minute]-diphenyl-N,N [prime or minute]-dimethylurea (methyl centralite) in gunshot residues using MS-MS method. Analyst. 124(11), 1563–1567 (1999)Google Scholar
  31. 31.
    Tong, Y., Wu, Z., Yang, C., Yu, J., Zhang, X., Yang, S., Deng, X., Xu, Y., Wen, Y.: Determination of diphenylamine stabilizer and its nitrated derivatives in smokeless gunpowder using a tandem MS method. Analyst. 126(4), 480–484 (2001)Google Scholar
  32. 32.
    Perez, J.J., Flanigan, P.M., Brady, J.J., Levis, R.J.: Classification of smokeless powders using laser electrospray mass spectrometry and offline multivariate statistical analysis. Anal. Chem. 85(1), 296–302 (2013)Google Scholar
  33. 33.
    Zhao, M., Zhang, S., Yang, C., Xu, Y., Wen, Y., Sun, L., Zhang, X.: Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J. Forensic Sci. 53(4), 807–811 (2008)Google Scholar
  34. 34.
    Morelato, M., Beavis, A., Ogle, A., Doble, P., Kirkbride, P., Roux, C.: Screening of gunshot residues using desorption electrospray ionisation–mass spectrometry (DESI–MS). Forensic Sci. Int. 217(1–3), 101–106 (2012)Google Scholar
  35. 35.
    Li, F., Tice, J., Musselman, B.D., Hall, A.B.: A method for rapid sampling and characterization of smokeless powder using sorbent-coated wire mesh and direct analysis in real time-mass spectrometry (DART-MS). Sci. Justice. 56(5), 321–328 (2016)Google Scholar
  36. 36.
    Mahoney, C.M., Gillen, G., Fahey, A.J.: Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Forensic Sci. Int. 158(1), 39–51 (2006)Google Scholar
  37. 37.
    Bueno, J., Sikirzhytski, V., Lednev, I.K.: Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation. Anal. Chem. 84(10), 4334–4339 (2012)Google Scholar
  38. 38.
    Andrew, M., Ellis, C.A.M.: Proton transfer reaction mass spectrometry: principles and applications. 1st Ed. Wiley (2014)Google Scholar
  39. 39.
    Biasioli, F., Yeretzian, C., Märk, T.D., Dewulf, J., Van Langenhove, H.: Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis. TrAC Trends Anal. Chem. 30(7), 1003–1017 (2011)Google Scholar
  40. 40.
    Lindinger, W., Hirber, J., Paretzke, H.: An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int. J. Mass Spectrom. Ion Process. 129, 79–88 (1993)Google Scholar
  41. 41.
    González-Méndez, R., Reich, D.F., Mullock, S.J., Corlett, C.A., Mayhew, C.A.: Development and use of a thermal desorption unit and proton transfer reaction mass spectrometry for trace explosive detection: determination of the instrumental limits of detection and an investigation of memory effects. Int. J. Mass Spectrom. 385, 13–18 (2015)Google Scholar
  42. 42.
    Shen, C., Li, J., Han, H., Wang, H., Jiang, H., Chu, Y.: Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer. Int. J. Mass Spectrom. 285(1–2), 100–103 (2009)Google Scholar
  43. 43.
    Mayhew, C.A., Sulzer, P., Petersson, F., Haidacher, S., Jordan, A., Märk, L., Watts, P., Märk, T.D.: Applications of proton transfer reaction time-of-flight mass spectrometry for the sensitive and rapid real-time detection of solid high explosives. Int. J. Mass Spectrom. 289(1), 58–63 (2010)Google Scholar
  44. 44.
    Jürschik, S., Sulzer, P., Petersson, F., Mayhew, C.A., Jordan, A., Agarwal, B., Haidacher, S., Seehauser, H., Becker, K., Märk, T.D.: Proton transfer reaction mass spectrometry for the sensitive and rapid real-time detection of solid high explosives in air and water. Anal. Bioanal. Chem. 398(7–8), 2813–2820 (2010)Google Scholar
  45. 45.
    Sulzer, P., Agarwal, B., Jürschik, S., Lanza, M., Jordan, A., Hartungen, E., Hanel, G., Märk, L., Märk, T.D., González-Méndez, R., Watts, P., Mayhew, C.A.: Applications of switching reagent ions in proton transfer reaction mass spectrometric instruments for the improved selectivity of explosive compounds. Int. J. Mass Spectrom. 354–355(0), 123–128 (2013)Google Scholar
  46. 46.
    Agarwal, B., González-Méndez, R., Lanza, M., Sulzer, P., Märk, T.D., Thomas, N., Mayhew, C.A.: Sensitivity and selectivity of switchable reagent ion soft chemical ionization mass spectrometry for the detection of picric acid. J. Phys. Chem. A. 118(37), 8229–8236 (2014)Google Scholar
  47. 47.
    González-Méndez, R., Watts, P., Olivenza-León, D., Reich, D.F., Mullock, S.J., Corlett, C.A., Cairns, S., Hickey, P., Brookes, M., Mayhew, C.A.: Enhancement of compound selectivity using a radio frequency ion-funnel proton transfer reaction mass spectrometer: improved specificity for explosive compounds. Anal. Chem. 88(21), 10624–10630 (2016)Google Scholar
  48. 48.
    González-Méndez, R.: Development and applications of proton transfer reaction-mass spectrometry for homeland security: trace detection of explosives. PhD. In: University Of Birmingham (2017)Google Scholar
  49. 49.
    Sulzer, P., Petersson, F., Agarwal, B., Becker, K.H., Jürschik, S., Märk, T.D., Perry, D., Watts, P., Mayhew, C.A.: Proton transfer reaction mass spectrometry and the unambiguous real-time detection of 2,4,6 trinitrotoluene. Anal. Chem. 84(9), 4161–4166 (2012)Google Scholar
  50. 50.
    González-Méndez, R., Watts, P., Reich, D.F., Mullock, S.J., Cairns, S., Hickey, P., Brookes, M., Mayhew, C.A.: Use of rapid reduced electric field switching to enhance compound specificity for proton transfer reaction-mass spectrometry. Anal. Chem. 90(9), 5664–5670 (2018)Google Scholar
  51. 51.
    Eiceman, G.A., Karpas, Z., Hill Jr., H.H.: Ion mobility spectrometry. CRC press (2013)Google Scholar
  52. 52.
    Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Herbig, J., Märk, L., Schottkowsky, R., Seehauser, H., Sulzer, P., Märk, T.D.: An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI − MS). Int. J. Mass Spectrom. 286(1), 32–38 (2009)Google Scholar
  53. 53.
    Harrison, A.G.: Chemical ionization mass spectrometry. CRC Press (1982)Google Scholar
  54. 54.
    Gross, J.H.: Mass spectrometry. A textbook. 2nd Ed. Springer (2011)Google Scholar
  55. 55.
    Gilbert-López, B., García-Reyes, J.F., Ortega-Barrales, P., Molina-Díaz, A., Fernández-Alba, A.R.: Analyses of pesticide residues in fruit-based baby food by liquid chromatography/electrospray ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 21(13), 2059–2071 (2007)Google Scholar
  56. 56.
    The Smokeless Powders Database http://www.ilrc.ucf.edu/powders/index.php. Accessed 08 Jan 2018

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Molecular Physics Group, School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  2. 2.Centre for Agroecology, Water and ResilienceCoventry UniversityCoventryUK
  3. 3.Institut für AtemgasanalytikLeopold-Franzens-Universität InnsbruckDornbirnAustria

Personalised recommendations