Online Sol-gel Capillary Microextraction-Mass Spectrometry (CME-MS) Analysis of Illicit Drugs

  • Emre Seyyal
  • Theresa Evans-NguyenEmail author
Research Article


Providing rapid and sensitive sample cleanup, sol-gel capillary microextraction (CME) is a form of solid phase microextraction (SPME). The capillary format of CME couples easily with mass spectrometry (MS) by employing sol-gel sorbent coatings in inexpensive fused silica capillaries. By leveraging the syringe pump and six-port valve readily available on the commercial MS, we can obviate the need for chromatography for samples as complex as urine in quantitative assays. Two different sol-gel materials were studied as microextraction sorbents: one with a single ligand of octadecyl (C18) and the other with a dual-ligand combination of C18 and phenyl (Phe) groups. The CME-MS method was optimized for flow rate and solvent desorption and studied for overall microextraction performance between the two sorbents studied. We extract illicit drugs including cocaine, heroin, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, and oxycodone, proving good run-to-run reproducibility (RSD% < 10%) and low detection limits (< 10 ng mL−1). The dual-ligand sorbent demonstrated superior performance due to typical hydrophobic properties of C18 as well as potential π-π interactions of the Phe functionality and the aromatic moiety common to many drugs. This study demonstrates the advantage of fine-tuning sol-gel sorbents for application-specific CME-MS. We apply our method to the analysis of various drugs in synthetic and human urine samples and show low carryover effect (~ 5%) and low matrix effect in the presence of the urine matrix. Thus, the sol-gel CME-MS technique described herein stands to be an attractive alternative to other SPME-MS techniques.


Solid phase microextraction Sample preparation Urine analysis Forensics Drugs Sol-gel SPME-MS 



We are grateful to Ms. Dina Swanson of the Hillsborough County Medical Examiner’s Office for provision of the case samples. Furthermore, E.S. thanks Timothy Vazquez, Nathan Grimes, Benjimen Batazhan, and Merve Kacar for valuable help in the preparation of the manuscript.

Supplementary material

13361_2018_2127_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2438 kb)


  1. 1.
    Belardi, R.P., Pawliszyn, J.B.: The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Qual. Res. J. Can. 24, 179–191 (1989)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z., Pawliszyn, J.: Headspace solid-phase microextraction. Anal. Chem. 65, 1843–1852 (1993)CrossRefGoogle Scholar
  3. 3.
    Rudnicka, J., Kowalkowski, T., Ligor, T., Buszewski, B.: Determination of volatile organic compounds as biomarkers of lung cancer by SPME–GC–TOF/MS and chemometrics. J. Chromatogr. B. 879, 3360–3366 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Pawliszyn, J.B.: Solid phase microextraction coupled to high-performance liquid chromatography. Anal. Chem. 67, 2530–2533 (1995)CrossRefGoogle Scholar
  5. 5.
    Wang, C., Zhou, W., Liao, X., Zhang, W., Chen, Z.: An etched polyether ether ketone tube covered with immobilized graphene oxide for online solid phase microextraction of quaternary alkaloids prior to their quantitation by HPLC-MS/MS. Microchim. Acta. 184, 2715–2721 (2017)CrossRefGoogle Scholar
  6. 6.
    Piri-Moghadam, H., Lendor, S., Pawliszyn, J.: Development of a biocompatible in-tube solid-phase microextraction device: a sensitive approach for direct analysis of single drops of complex matrixes. Anal. Chem. 88, 12188–12195 (2016)CrossRefGoogle Scholar
  7. 7.
    Whang, C.-W., Pawliszyn, J.: Solid phase microextraction coupled to capillary electrophoresis. Anal. Commun. 35, 353–356 (1998)CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Li, Y., Chen, Z.: Selective and sensitive determination of protoberberines by capillary electrophoresis coupled with molecularly imprinted microextraction. J. Sep. Sci. 38, 3969–3975 (2015)CrossRefGoogle Scholar
  9. 9.
    Lesellier, E.: Extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) by solid phase micro-extraction/supercritical fluid chromatography (SPME/SFC). Analusis. 27, 363–368 (1999)CrossRefGoogle Scholar
  10. 10.
    Fang, L., Deng, J., Yang, Y., Wang, X., Chen, B., Liu, H., Zhou, H., Ouyang, G., Luan, T.: Coupling solid-phase microextraction with ambient mass spectrometry: strategies and applications. TrAC Trends Anal. Chem. 85, 61–72 (2016)CrossRefGoogle Scholar
  11. 11.
    Gómez-Ríos, G.A., Pawliszyn, J.: Solid phase microextraction (SPME)-transmission mode (TM) pushes down detection limits in direct analysis in real time (DART). Chem. Commun. 50, 12937–12940 (2014)CrossRefGoogle Scholar
  12. 12.
    Kennedy, J.H., Aurand, C., Shirey, R., Laughlin, B.C., Wiseman, J.M.: Coupling desorption electrospray ionization with solid-phase microextraction for screening and quantitative analysis of drugs in urine. Anal. Chem. 82, 7502–7508 (2010)CrossRefGoogle Scholar
  13. 13.
    Deng, J., Yu, T., Yao, Y., Peng, Q., Luo, L., Chen, B., Wang, X., Yang, Y., Luan, T.: Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Anal. Chim. Acta. 954, 52–59 (2017)CrossRefGoogle Scholar
  14. 14.
    Mirabelli, M.F., Wolf, J.-C., Zenobi, R.: Direct coupling of solid-phase microextraction with mass spectrometry: sub-pg/g sensitivity achieved using a dielectric barrier discharge ionization source. Anal. Chem. 88, 7252–7258 (2016)CrossRefGoogle Scholar
  15. 15.
    Gómez-Ríos, G.A., Tascon, M., Reyes-Garcés, N., Boyacı, E., Poole, J.J., Pawliszyn, J.: Rapid determination of immunosuppressive drug concentrations in whole blood by coated blade spray-tandem mass spectrometry (CBS-MS/MS). Anal. Chim. Acta. 999, 69–75 (2018)CrossRefGoogle Scholar
  16. 16.
    Tascon, M., Gómez-Ríos, G.A., Reyes-Garcés, N., Poole, J., Boyacı, E., Pawliszyn, J.: Ultra-fast quantitation of voriconazole in human plasma by coated blade spray mass spectrometry. J. Pharm. Biomed. Anal.
  17. 17.
    Yang, B.-C., Fang, S.-F., Wan, X.-J., Luo, Y., Zhou, J.-Y., Li, Y., Li, Y.-J., Wang, F., Huang, O.-P.: Quantification of monohydroxylated polycyclic aromatic hydrocarbons in human urine samples using solid-phase microextraction coupled with glass-capillary nanoelectrospray ionization mass spectrometry. Anal. Chim. Acta.
  18. 18.
    Deng, J., Yang, Y., Wang, X., Luan, T.: Strategies for coupling solid-phase microextraction with mass spectrometry. TrAC Trends Anal. Chem. 55, 55–67 (2014)CrossRefGoogle Scholar
  19. 19.
    Reyes-Garcés, N., Gionfriddo, E., Gómez-Ríos, G.A., Alam, M.N., Boyacı, E., Bojko, B., Singh, V., Grandy, J., Pawliszyn, J.: Advances in solid phase microextraction and perspective on future directions. Anal. Chem. 90, 302–360 (2018)CrossRefGoogle Scholar
  20. 20.
    D’Agostino, P.A., Chenier, C.L., Hancock, J.R., Lepage, C.R.: Jackson: desorption electrospray ionisation mass spectrometric analysis of chemical warfare agents from solid-phase microextraction fibers. Rapid Commun. Mass Spectrom. 21, 543–549 (2007)CrossRefGoogle Scholar
  21. 21.
    D’Agostino, P.A., Chenier, C.L.: Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1617–1624 (2010)CrossRefGoogle Scholar
  22. 22.
    Huang, G., Chen, H., Zhang, X., Cooks, R.G., Ouyang, Z.: Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 79, 8327–8332 (2007)CrossRefGoogle Scholar
  23. 23.
    Strittmatter, N., Düring, R.-A., Takáts, Z.: Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry. Analyst. 137, 4037–4044 (2012)CrossRefGoogle Scholar
  24. 24.
    LaPointe, J., Musselman, B., O’Neill, T., Shepard, J.R.E.: Detection of “bath salt” synthetic cathinones and metabolites in urine via DART-MS and solid phase microextraction. J. Am. Soc. Mass Spectrom. 26, 159–165 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Li, X., Li, Z., Zhang, Y., Bai, Y., Liu, H.: Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal. Chem. 86, 4739–4747 (2014)CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Lafuente, A., Mirnaghi, F.S., Pawliszyn, J.: Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 405, 9723–9727 (2013)CrossRefGoogle Scholar
  27. 27.
    Li, X., Wang, H., Sun, W., Ding, L.: Desorption corona beam ionization coupled with a poly (dimethylsiloxane) substrate: broadening the application of ambient ionization for water samples. Anal. Chem. 82, 9188–9193 (2010)CrossRefGoogle Scholar
  28. 28.
    Almasian, M.R., Yang, C., Xing, Z., Zhang, S., Zhang, X.: Development of a graphite low-temperature plasma source with dual-mode in-source fragmentation for ambient mass spectrometry. Rapid Commun. Mass Spectrom. 24, 742–748 (2010)CrossRefGoogle Scholar
  29. 29.
    Amiri, A.: Solid-phase microextraction-based sol–gel technique. TrAC Trends Anal. Chem. 75, 57–74 (2016)CrossRefGoogle Scholar
  30. 30.
    Bigham, S., Medlar, J., Kabir, A., Shende, C., Alli, A., Malik, A.: Sol−gel capillary microextraction. Anal. Chem. 74, 752–761 (2002)CrossRefGoogle Scholar
  31. 31.
    Kulkarni, S., Fang, L., Alhooshani, K., Malik, A.: Sol–gel immobilized cyano-polydimethylsiloxane coating for capillary microextraction of aqueous trace analytes ranging from polycyclic aromatic hydrocarbons to free fatty acids. J. Chromatogr. A. 1124, 205–216 (2006)CrossRefGoogle Scholar
  32. 32.
    Zeng, J., Chen, J., Lin, Z., Chen, W., Chen, X., Wang, X.: Development of polymethylphenylsiloxane-coated fiber for solid-phase microextraction and its analytical application of qualitative and semi-quantitative of organochlorine and pyrethroid pesticides in vegetables. Anal. Chim. Acta. 619, 59–66 (2008)CrossRefGoogle Scholar
  33. 33.
    Lopes, A.L., Augusto, F.: Preparation and characterization of polydimethylsiloxane/poly (vinylalcohol) coated solid phase microextraction fibers using sol–gel technology. J. Chromatogr. A. 1056, 13–19 (2004)CrossRefGoogle Scholar
  34. 34.
    da Costa Silva, R.G., Augusto, F.: Sol–gel molecular imprinted ormosil for solid-phase extraction of methylxanthines. J. Chromatogr. A. 1114, 216–223 (2006)CrossRefGoogle Scholar
  35. 35.
    Seyyal, E., Malik, A.: Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction. Anal. Chim. Acta. 964, 96–111 (2017)CrossRefGoogle Scholar
  36. 36.
    Alhendal, A., Mengis, S., Matthews, J., Malik, A.: Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters. J. Chromatogr. A. 1468, 23–32 (2016)CrossRefGoogle Scholar
  37. 37.
    Tran, M., Turner, E.B., Segro, S.S., Fang, L., Seyyal, E., Malik, A.: Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography. J. Chromatogr. A. 1522, 38–47 (2017)CrossRefGoogle Scholar
  38. 38.
    Sheshanka, K., Abdul, M.: Sol–gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis. J. Sep. Sci. 0, (2017).
  39. 39.
    Kim, T.-Y., Alhooshani, K., Kabir, A., Fries, D.P., Malik, A.: High pH-resistant, surface-bonded sol–gel titania hybrid organic–inorganic coating for effective on-line hyphenation of capillary microextraction (in-tube solid-phase microextraction) with high-performance liquid chromatography. J. Chromatogr. A. 1047, 165–174 (2004)CrossRefGoogle Scholar
  40. 40.
    Fang, L., Kulkarni, S., Alhooshani, K., Malik, A.: Germania-based, sol−gel hybrid organic−inorganic coatings for capillary microextraction and gas chromatography. Anal. Chem. 79, 9441–9451 (2007)CrossRefGoogle Scholar
  41. 41.
    Kabir, A., Furton, K.G., Malik, A.: Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal. Chem. 45, 197–218 (2013)CrossRefGoogle Scholar
  42. 42.
    Bagheri, H., Piri-Moghadam, H., Bayat, P., Balalaie, S.: Application of sol–gel based molecularly imprinted xerogel for on-line capillary microextraction of fentanyl from urine and plasma samples. Anal. Methods. 5, 7096–7101 (2013)CrossRefGoogle Scholar
  43. 43.
    Chen, B., Peng, H., Zheng, F., Hu, B., He, M., Zhao, W., Pang, D.: Immunoaffinity monolithic capillary microextraction coupled with ICP-MS for immunoassay with quantum dot labels. J. Anal. At. Spectrom. 25, 1674–1681 (2010)CrossRefGoogle Scholar
  44. 44.
    Mu, L., Hu, X., Wen, J., Zhou, Q.: Robust aptamer sol–gel solid phase microextraction of very polar adenosine from human plasma. J. Chromatogr. A. 1279, 7–12 (2013)CrossRefGoogle Scholar
  45. 45.
    Sarafraz-Yazdi, A., Vatani, H.: A solid phase microextraction coating based on ionic liquid sol–gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector. J. Chromatogr. A. 1300, 104–111 (2013)CrossRefGoogle Scholar
  46. 46.
    Hayes, J.D., Malik, A.: Sol–gel chemistry-based Ucon-coated columns for capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 695, 3–13 (1997)CrossRefGoogle Scholar
  47. 47.
    Haddad, L.: Synthetic urine and method of making same,, (2006). Accessed 02 April 2018
  48. 48.
    Ou, D.L., Seddon, A.B.: Near- and mid-infrared spectroscopy of sol–gel derived ormosils: vinyl and phenyl silicates. J. Non-Cryst. Solids. 210, 187–203 (1997)CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Clinical Laboratory Reference. Cutoff and toxicity levels for drugs-of-abuse testing, Accessed 19 July 2018
  51. 51.
    Piri-Moghadam, H., Ahmadi, F., Gómez-Ríos, G.A., Boyacı, E., Reyes-Garcés, N., Aghakhani, A., Bojko, B., Pawliszyn, J.: Fast quantitation of target analytes in small volumes of complex samples by matrix-compatible solid-phase microextraction devices. Angew. Chem. Int. Ed. 55, 7510–7514.
  52. 52.
    Tascon, M., Gómez-Ríos, G.A., Reyes-Garcés, N., Poole, J., Boyacı, E., Pawliszyn, J.: High-throughput screening and quantitation of target compounds in biofluids by coated blade spray-mass spectrometry. Anal. Chem. 89, 8421–8428 (2017)CrossRefGoogle Scholar
  53. 53.
    Augusto Gómez-Ríos, G., Vasiljevic, T., Gionfriddo, E., Yu, M., Pawliszyn, J.: Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. Analyst. 142, 2928–2935 (2017)CrossRefGoogle Scholar
  54. 54.
    Boyacı, E., Gorynski, K., Rodriguez-Lafuente, A., Bojko, B., Pawliszyn, J.: Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances. Anal. Chim. Acta. 809, 69–81 (2014)CrossRefGoogle Scholar
  55. 55.
    Matuszewski, B.K.: Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J. Chromatogr. B. 830, 293–300 (2006)CrossRefGoogle Scholar
  56. 56.
    Matuszewski, B.K., Constanzer, M.L., Chavez-Eng, C.M.: Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 75, 3019–3030 (2003)CrossRefGoogle Scholar
  57. 57.
    Isaguirre, A.C., Olsina, R.A., Martinez, L.D., Lapierre, A.V., Cerutti, S.: Development of solid phase extraction strategies to minimize the effect of human urine matrix effect on the response of carnitine by UPLC–MS/MS. Microchem. J. 129, 362–367 (2016)CrossRefGoogle Scholar
  58. 58.
    Mirnaghi, F.S., Pawliszyn, J.: Development of coatings for automated 96-blade solid phase microextraction-liquid chromatography–tandem mass spectrometry system, capable of extracting a wide polarity range of analytes from biological fluids. J. Chromatogr. A. 1261, 91–98 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations