DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

  • Ling Ling
  • Ying Li
  • Sheng Wang
  • Liming Guo
  • Chunsheng Xiao
  • Xuesi Chen
  • Xinhua Guo
Research Article


Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M–H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples.

Graphical Abstract


MALDI-TOF MS Matrix Small molecules Fatty acids Quantification Negative ion mode 



This work was financially supported by the National Natural Science Foundation of China (51273080, 21675060, and 51203153) and International Collaboration Program of Jilin province (20160414010GH).

Supplementary material

13361_2017_1881_MOESM1_ESM.doc (10.5 mb)
ESM 1 (DOC 10772 kb)


  1. 1.
    Nicklay, J.J., Harris, G.A., Schey, K.L., Caprioli, R.M.: MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections. Anal. Chem. 85, 7191–7196 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhang, W.Z., Chait, B.T.: Profound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72, 2482–2489 (2000)CrossRefGoogle Scholar
  3. 3.
    Rohmer, M., Meyer, B., Mank, M., Stahl, B., Bahr, U., Karas, M.: 3-Aminoquinoline acting as matrix and derivatizing agent for MALDI MS analysis of oligosaccharides. Anal. Chem. 82, 3719–3726 (2010)CrossRefGoogle Scholar
  4. 4.
    Fu, Y., Xu, S., Pan, C., Ye, M., Zou, H., Guo, B.: A matrix of 3,4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 34, e94Ve94 (2006)CrossRefGoogle Scholar
  5. 5.
    Nielen, M.W.F.: Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 18, 309–344 (1999)CrossRefGoogle Scholar
  6. 6.
    Beavis, R.C., Chaudhary, T., Chait, B.T.: α-Cyano-4-hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass spectrometry. Org. Mass Spectrom. 27, 156–158 (1992)CrossRefGoogle Scholar
  7. 7.
    Strupat, K., Karas, M., Hillenkamp, F.: 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes. 111, 89–102 (1991)CrossRefGoogle Scholar
  8. 8.
    Wei, J., Buriak, J.M., Siuzdak, G.: Desorption-ionization mass spectrometry on porous silicon. Nature. 399, 243–246 (1999)CrossRefGoogle Scholar
  9. 9.
    Cha, S., Yeung, E.S.: Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal. Chem. 79, 2373–2385 (2007)CrossRefGoogle Scholar
  10. 10.
    Dong, X., Cheng, J., Li, J., Wang, Y.: Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem. 82, 6208–6214 (2010)CrossRefGoogle Scholar
  11. 11.
    Xu, S.Y., Li, Y.F., Zou, H.F., Qiu, J.S., Guo, Z., Guo, B.C.: Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 75, 6191–6195 (2003)CrossRefGoogle Scholar
  12. 12.
    Chen, S., Zheng, H., Wang, J., Hou, J., He, Q., Liu, H., Xiong, C., Kong, X., Nie, Z.: Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real samples. Anal. Chem. 85, 6646–6652 (2013)CrossRefGoogle Scholar
  13. 13.
    Lu, W., Li, Y., Li, R., Shuang, S., Dong, C., Cai, Z.: Facile synthesis of N-doped carbon dots as a new matrix for detection of hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/lonization time-of-flight mass spectrometry. ACS Appl. Mater. Interfaces. 8, 12976–12984 (2016)CrossRefGoogle Scholar
  14. 14.
    Wu, H.-P., Yu, C.-J., Lin, C.-Y., Lin, Y.-H., Tseng, W.-L.: Gold nanoparticles as assisted matrices for the detection of biomolecules in a high-salt solution through laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 875–882 (2009)CrossRefGoogle Scholar
  15. 15.
    Vermillion-Salsbury, R.L., Hercules, D.M.: 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 16, 1575–1581 (2002)CrossRefGoogle Scholar
  16. 16.
    Chen, R., Chen, S., Xiong, C., Ding, X., Wu, C.-C., Chang, H.-C., Xiong, S., Nie, Z.: N-(1-naphthyl) ethylenediamine dinitrate: a new matrix for negative ion MALDI-TOF MS analysis of small molecules. J. Am. Soc. Mass Spectrom. 23, 1454–1460 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Qiu, S., Chen, S., Xiong, C., Liu, H., Wang, J., Zhang, N., Hou, J., He, Q., Nie, Z., MALDI-TOF, M.S.: imaging of metabolites with a N-(1-naphthyl) ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver metastasis. Anal. Chem. 87, 422–430 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Chen, R., Wang, J., Chen, S., Xiong, C., Wang, J., Hou, J., He, Q., Zhang, N., Nie, Z., Mao, L.: 1,5-Diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia. Anal. Chem. 86, 10114–10121 (2014)CrossRefGoogle Scholar
  19. 19.
    Shroff, R., Svatoš, A.: Proton Sponge: A novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry. Anal. Chem. 81, 7954–7959 (2009)CrossRefGoogle Scholar
  20. 20.
    Weißflog, J., Svatoš, A.: 1,8-Di(piperidinyl)-naphthalene – rationally designed MAILD/MALDI matrix for metabolomics and imaging mass spectrometry. RSC Adv. 6, 75073–75081 (2016)CrossRefGoogle Scholar
  21. 21.
    Napagoda, M., Rulíšek, L., Jančarík, A., Klívar, J., Šámal, M., Stará, I.G., Starý, I., Šolínová, V., Kašička, V., Svatoš, A.: Azahelicene superbases as MAILD matrices for acidic analytes. ChemPlusChem 78, 937–942 (2013).Google Scholar
  22. 22.
    Shroff, R., Rulíšek, L., Doubský, J., Svatoš, A.: Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc. Natl. Acad. Sci. USA. 106, 10092–10096 (2009)CrossRefGoogle Scholar
  23. 23.
    Morisco, F., Vitaglione, P., Amoruso, D., Russo, B., Fogliano, V.: Caporaso: Foods and liver health. N. Mol. Aspects Med. 29, 144–150 (2008)CrossRefGoogle Scholar
  24. 24.
    Simopoulos, A.P.: Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70, 560s–569s (1999)CrossRefGoogle Scholar
  25. 25.
    Wall, R., Ross, R.P., Fitzgerald, G.F., Stanton, C.: Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 68, 280–289 (2010)CrossRefGoogle Scholar
  26. 26.
    Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., Macia, L.: The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014)CrossRefGoogle Scholar
  27. 27.
    Önnerfjord, P., Ekström, S., Bergquist, J., Nilsson, J., Laurell, T., Marko-Varga, G.: Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 13, 315–322 (1999)CrossRefGoogle Scholar
  28. 28.
    Schwarzinger, C., Gabriel, S., Beißmann, S., Buchberger, W.: Quantitative analysis of polymer additives with MALDI-TOF MS using an internal standard approach. J. Am. Soc. Mass Spectrom. 23, 1120–1125 (2012)CrossRefGoogle Scholar
  29. 29.
    Bourcier, S., Hoppilliard, Y.: B3LYP DFT molecular orbital approach, an efficient method to evaluate the thermochemical properties of MALDI matrices. Int. J. Mass Spectrom. 217, 231–244 (2002)CrossRefGoogle Scholar
  30. 30.
    Ehring, H., Karas, M., Hillenkamp, F.: Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 27, 472–480 (1992)Google Scholar
  31. 31.
    Shroff, R., Muck, A., Svatoš, A.: Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 21, 3295–3300 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life ScienceJilin UniversityChangchunChina

Personalised recommendations