Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

  • Sandra L. Blair
  • Nga L. Ng
  • Stephen C. Zambrzycki
  • Anyin Li
  • Facundo M. Fernández
Short Communication


In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy.

Graphical Abstract


Plasma ionization Aerosol analysis Prebiotic chemistry 



This work was jointly supported by NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1004570.

Supplementary material

13361_2017_1872_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1.07 mb)


  1. 1.
    Glasius, M., Goldstein, A.H.: Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol. 50, 2754–2764 (2016)CrossRefGoogle Scholar
  2. 2.
    Brüggemann, M., Karu, E., Hoffmann, T.: Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS. J. Mass Spectrom. 51, 141–149 (2016)CrossRefGoogle Scholar
  3. 3.
    DeCarlo, P.F., Kimmel, J.R., Trimborn, A., Northway, M.J., Jayne, J.T., Aiken, A.C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K.S., Worsnop, D.R., Jimenez, J.L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78, 8281–8289 (2006)CrossRefGoogle Scholar
  4. 4.
    Gross, J.H.: Direct analysis in real time—a critical review on DART-MS. Anal. Bioanal. Chem. 406, 63–80 (2014)CrossRefGoogle Scholar
  5. 5.
    Horan, A.J., Apsokardu, M.J., Johnston, M.V.: Droplet assisted inlet ionization for online analysis of airborne nanoparticles. Anal. Chem. 89, 1059–1062 (2017)CrossRefGoogle Scholar
  6. 6.
    Lopez-Hilfiker, F.D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T.F., Lutz, A., Hallquist, M., Worsnop, D., Thornton, J.A.: A novel method for online analysis of gas and particle composition: Description and evaluation of a filter inlet for gases and aerosols (FIGAERO). Atmos. Meas. Tech. 7, 983–1001 (2014)CrossRefGoogle Scholar
  7. 7.
    Pratt, K.A., Prather, K.A.: Mass spectrometry of atmospheric aerosols—recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31, 17–48 (2012)CrossRefGoogle Scholar
  8. 8.
    Swanson, K.D., Worth, A.L., Glish, G.L.: A coaxial extractive electrospray ionization source. Anal. Methods. 9, 4997–5002 (2017)CrossRefGoogle Scholar
  9. 9.
    Kristensen, K., Bilde, M., Aalto, P.P., Petäjä, T., Glasius, M.: Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: gas/particle distribution and possible sampling artifacts. Atmos. Environ. 130, 36–53 (2016)CrossRefGoogle Scholar
  10. 10.
    Brueggemann, M., Karu, E., Stelzer, T., Hoffmann, T.: Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (aerofapa-ms). Environ. Sci. Technol. 49, 5571–5578 (2015)CrossRefGoogle Scholar
  11. 11.
    Wolf, J.-C., Gyr, L., Mirabelli, M.F., Schaer, M., Siegenthaler, P., Zenobi, R.: A radical-mediated pathway for the formation of [m + h]+ in dielectric barrier discharge ionization. J. Am. Soc. Mass Spectrom. 27, 1468–1475 (2016)CrossRefGoogle Scholar
  12. 12.
    Mirabelli, M.F., Wolf, J.-C., Zenobi, R.: Atmospheric pressure soft ionization for gas chromatography with dielectric barrier discharge ionization-mass spectrometry (GC-DBDI-MS). Analyst (Cambridge, UK). 142, 1909–1915 (2017)CrossRefGoogle Scholar
  13. 13.
    Lukas, B., Pablo Martinez-Lozano, S., Maryia, M.N., Renato, Z.: Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry. J. Breath Res. 8, 027102 (2014)CrossRefGoogle Scholar
  14. 14.
    Krechmer, J.E., Groessl, M., Zhang, X., Junninen, H., Massoli, P., Lambe, A.T., Kimmel, J.R., Cubison, M.J., Graf, S., Lin, Y.H., Budisulistiorini, S.H., Zhang, H., Surratt, J.D., Knochenmuss, R., Jayne, J.T., Worsnop, D.R., Jimenez, J.L., Canagaratna, M.R.: Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species. Atmos. Meas. Tech. 9, 3245–3262 (2016)CrossRefGoogle Scholar
  15. 15.
    Forbes, T.P., Staymates, M.: Enhanced aerodynamic reach of vapor and aerosol sampling for real-time mass spectrometric detection using venturi-assisted entrainment and ionization. Anal. Chim. Acta. 957, 20–28 (2017)CrossRefGoogle Scholar
  16. 16.
    Keelor J.D., Farnsworth P.B., L. Weber A., Abbott-Lyon H., Fernández F.M.: Multimodal vacuum-assisted plasma ion (VAPI) source with transmission mode and laser ablation sampling capabilities. J. Am. Soc. Mass Spectrom. 27, 897–907 (2016)Google Scholar
  17. 17.
    Forsythe, J.G., Petrov, A.S., Walker, C.A., Allen, S.J., Pellissier, J.S., Bush, M.F., Hud, N.V., Fernandez, F.M.: Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst. 140, 6853–6861 (2015)CrossRefGoogle Scholar
  18. 18.
    Apel, C.L., Deamer, D.W.: The formation of glycerol monodecanoate by a dehydration condensation reaction: increasing the chemical complexity of amphiphiles on the early earth. Origins Life Evol. Biospheres. 35, 323–332 (2005)CrossRefGoogle Scholar
  19. 19.
    Dobson, C.M., Ellison, G.B., Tuck, A.F., Vaida, V.: Atmospheric aerosols as prebiotic chemical reactors. Proc. NatL. Acad. Sci. USA. 97, 11864–11868 (2000)CrossRefGoogle Scholar
  20. 20.
    Donaldson, D.J., Tervahattu, H., Tuck, A.F., Vaida, V.: Organic aerosols and the origin of life: a hypothesis. Origins Life Evol. Biosphere. 34, 57–67 (2004)CrossRefGoogle Scholar
  21. 21.
    Tuck, A.: The role of atmospheric aerosols in the origin of life. Surv. Geophys. 23, 379–409 (2002)CrossRefGoogle Scholar
  22. 22.
    Mamajanov, I., MacDonald, P.J., Ying, J., Duncanson, D.M., Dowdy, G.R., Walker, C.A., Engelhart, A.E., Fernandez, F.M., Grover, M.A., Hud, N.V., Schork, F.J.: Ester formation and hydrolysis during wet-dry cycles: Generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules. 47, 1334–1343 (2014)CrossRefGoogle Scholar
  23. 23.
    Trainer, M.G.: Atmospheric prebiotic chemistry and organic hazes. Curr. Org. Chem. 17, 1710–1723 (2013)CrossRefGoogle Scholar
  24. 24.
    Ruiz-Bermejo, M., Menor-Salván, C., Osuna-Esteban, S., Veintemillas-Verdaguer, S.: The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. Origins Life Evol. B. 37, 507 (2007)CrossRefGoogle Scholar
  25. 25.
    Ugelow, M.S., Zarzana, K.J., Day, D.A., Jimenez, J.L., Tolbert, M.A.: The optical and chemical properties of discharge generated organic haze using in-situ real-time techniques. Icarus. 294, 1–13 (2017)CrossRefGoogle Scholar
  26. 26.
    Ruiz-Bermejo, M., Osuna-Esteban, S., Zorzano, M.-P.: Role of ferrocyanides in the prebiotic synthesis of α-amino acids. Origins Life Evol. B. 43, 191–206 (2013)CrossRefGoogle Scholar
  27. 27.
    Forsythe J.G., Yu S.-S., Mamajanov I., Grover M.A., Krishnamurthy R., Fernández F.M., Hud N.V.: Ester-mediated amide bond formation driven by wet–dry cycles: A possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Edit. 54, 9871–9875 (2015)Google Scholar
  28. 28.
    Leenheer, J.A., Rostad, C.E., Gates, P.M., Furlong, E.T., Ferrer, I.: Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry. Anal. Chem. 73, 1461–1471 (2001)CrossRefGoogle Scholar
  29. 29.
    Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernández, F.M.: Comparison of the internal energy deposition of direct analysis in real time and electrospray ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 855–863 (2010)CrossRefGoogle Scholar
  30. 30.
    Venter, A.R., Douglass, K.A., Shelley, J.T., Hasman, G., Hornarvar, E.: Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal. Chem. (Washington, DC, USA). 86, 233–249 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Sandra L. Blair
    • 1
  • Nga L. Ng
    • 1
    • 2
  • Stephen C. Zambrzycki
    • 3
  • Anyin Li
    • 3
  • Facundo M. Fernández
    • 3
  1. 1.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations