Advertisement

UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

Research Article

Abstract

Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%–100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.

Graphical Abstract

Keywords

Ozonolysis Unsaturated lipid Electrospray ionization Lipidomics LC-ms 

Notes

Acknowledgments

Financial support from NSF CHE-1308114 and NIH R01-GM118184 is greatly appreciated. C.A.S. acknowledges the Purdue Department of Chemistry for the Emerson Kampen Fellowship Award.

References

  1. 1.
    Zeyda, M., Staffler, G., Hořejší, V., Waldhäusl, W., Stulnig, T.M.: LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids. J. Biol. Chem. 277, 28418–28423 (2002)CrossRefGoogle Scholar
  2. 2.
    Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.-J., Pierce, S.K.: Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003)CrossRefGoogle Scholar
  3. 3.
    Niki, E.: Biomarkers of lipid peroxidation in clinical material. Biochim. Biophys.Acta Gen. Subj. 1840, 809–817 (2014)Google Scholar
  4. 4.
    Mutlu, H., Meier, M.A.R.: Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 112, 10–30 (2010)CrossRefGoogle Scholar
  5. 5.
    Foley, P., Kermanshahi Pour, A., Beach, E.S., Zimmerman, J.B.: Derivation and synthesis of renewable surfactants. Chem. Soc. Rev. 41, 1499–1518 (2012)CrossRefGoogle Scholar
  6. 6.
    Dilzer, A., Park, Y.: Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 52, 488–513 (2011)CrossRefGoogle Scholar
  7. 7.
    Cajka, T., Fiehn, O.: Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal. Chem. 61, 192–206 (2014)CrossRefGoogle Scholar
  8. 8.
    Brügger, B.: Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu. Rev. Biochem. 83, 79–98 (2014)CrossRefGoogle Scholar
  9. 9.
    Hancock, S.E., Poad, B.L.J., Batarseh, A., Abbott, S.K., Mitchell, T.W.: Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal. Biochem. 524, 45–55 (2017)CrossRefGoogle Scholar
  10. 10.
    Kramer, J.K., Cruz-Hernandez, C., Deng, Z., Zhou, J., Jahreis, G., Dugan, M.E.: Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. Am. J. Clin. Nutr. 79, 1137S–1145S (2004)CrossRefGoogle Scholar
  11. 11.
    Roach, J.A.G., Mossoba, M.M., Yurawecz, M.P., Kramer, J.K.G.: Chromatographic separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta. 465, 207–226 (2002)CrossRefGoogle Scholar
  12. 12.
    Harrison, K.A., Murphy, R.C.: Direct mass spectrometric analysis of ozonides: application to unsaturated glycerophosphocholine lipids. Anal. Chem. 68, 3224–3230 (1996)CrossRefGoogle Scholar
  13. 13.
    Ma, X., Xia, Y.: Pinpointing double bonds in lipids by paternò-büchi reactions and mass spectrometry. Angew. Chem. Int. Ed. 126, 2592–2596 (2014)CrossRefGoogle Scholar
  14. 14.
    Ma, X., Chong, L., Tian, R., Shi, R., Hu, T.Y., Ouyang, Z., Xia, Y.: Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U. S. A. 113, 2573–2578 (2016)CrossRefGoogle Scholar
  15. 15.
    Yang, K., Dilthey, B.G., Gross, R.W.: Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal. Chem. 85, 9742–9750 (2013)CrossRefGoogle Scholar
  16. 16.
    Hsu, F.F., Turk, J.: Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 19, 1681–1691 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, M., Han, R.H., Han, X.: Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem. 85, 9312–9320 (2013)CrossRefGoogle Scholar
  18. 18.
    Brown, S.H.J., Mitchell, T.W., Blanksby, S.J.: Analysis of unsaturated lipids by ozone-induced dissociation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1811, 807–817 (2011)CrossRefGoogle Scholar
  19. 19.
    Pham, H.T., Ly, T., Trevitt, A.J., Mitchell, T.W., Blanksby, S.J.: Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem. 84, 7525–7532 (2012)CrossRefGoogle Scholar
  20. 20.
    Deimler, R.E., Sander, M., Jackson, G.P.: Radical-induced fragmentation of phospholipid cations using metastable atom-activated dissociation mass spectrometry (MAD-MS). Int. J. Mass Spectrom. 390, 178–186 (2015)CrossRefGoogle Scholar
  21. 21.
    Baba, T., Campbell, J.L., Le Blanc, J.C.Y., Baker, P.R.S.: Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO). J. Lipid Res. 57, 2015–2027 (2016)CrossRefGoogle Scholar
  22. 22.
    Ryan, E., Nguyen, C.Q.N., Shiea, C., Reid, G.E.: Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1406–1419 (2017)CrossRefGoogle Scholar
  23. 23.
    Klein, D.R., Brodbelt, J.S.: Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 89, 1516–1522 (2017)CrossRefGoogle Scholar
  24. 24.
    Bowman, A.P., Abzalimov, R.R., Shvartsburg, A.A.: Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1552–1561 (2017)Google Scholar
  25. 25.
    Kyle, J.E., Zhang, X., Weitz, K.K., Monroe, M.E., Ibrahim, Y.M., Moore, R.J., Cha, J., Sun, X., Lovelace, E.S., Wagoner, J.: Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 141, 1649 (2016)CrossRefGoogle Scholar
  26. 26.
    Castroperez, J., Roddy, T.P., Nibbering, N.M., Shah, V., Mclaren, D.G., Previs, S., Attygalle, A.B., Herath, K., Chen, Z., Wang, S.P.: Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 1552–1567 (2011)CrossRefGoogle Scholar
  27. 27.
    Privett, O.S., Nickell, E.C.: Recent advances in the determination of the structure of fatty acids via ozonolysis. J. Am. Oil Chem. Soc. 43, 393–400 (1966)CrossRefGoogle Scholar
  28. 28.
    Beroza, M., Bierl, B.A.: Rapid determination of olefin position in organic compounds in microgram range by ozonolysis and gas chromatography. Alkylidene analysis. Anal. Chem. 39, 1131–1135 (1967)CrossRefGoogle Scholar
  29. 29.
    Criegee, R.: Mechanism of ozonolysis. Angew. Chem. Int. Ed. 14, 745–752 (1975)CrossRefGoogle Scholar
  30. 30.
    Harrison, K.A., Davies, S.S., Marathe, G.K., McIntyre, T., Prescott, S., Reddy, K.M., Falck, J.R., Murphy, R.C.: Analysis of oxidized glycerophosphocholine lipids using electrospray ionization mass spectrometry and microderivatization techniques. J. Mass Spectrom. 35, 224–236 (2000)CrossRefGoogle Scholar
  31. 31.
    Thomas, M.C., Mitchell, T.W., Blanksby, S.J.: Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J. Am. Chem. Soc. 128, 58–59 (2006)CrossRefGoogle Scholar
  32. 32.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Murphy, R.C., Blanksby, S.J.: Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal. Chem. 79, 5013–5022 (2007)CrossRefGoogle Scholar
  33. 33.
    Zhang, J.I., Tao, W.A., Cooks, R.G.: Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry. Anal. Chem. 83, 4738–4744 (2011)CrossRefGoogle Scholar
  34. 34.
    Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Nealon, J.R., Blanksby, S.J.: Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2007)CrossRefGoogle Scholar
  35. 35.
    Pham, H., Maccarone, A., Campbell, J.L., Mitchell, T., Blanksby, S.: Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions. J. Am. Soc. Mass Spectrom. 24, 286–296 (2013)CrossRefGoogle Scholar
  36. 36.
    Kozlowski, R., Campbell, J.L., Mitchell, T., Blanksby, S.: Combining liquid chromatography with ozone-induced dissociation for the separation and identification of phosphatidylcholine double bond isomers. Anal. Bioanal. Chem. 407, 5053–5064 (2015)CrossRefGoogle Scholar
  37. 37.
    Vu, N., Brown, J., Giles, K., Zhang, Q.: Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids. Rapid Commun. Mass Spectrom. 31, 1415–1423 (2017)CrossRefGoogle Scholar
  38. 38.
    Poad, B.L.J., Green, M.R., Kirk, J.M., Tomczyk, N., Mitchell, T.W., Blanksby, S.J.: High-pressure ozone-induced dissociation for lipid structure elucidation on fast chromatographic timescales. Anal. Chem. 89, 4223–4229 (2017)CrossRefGoogle Scholar
  39. 39.
    Sun, C., Zhao, Y.-Y., Curtis, J.M.: Elucidation of phosphatidylcholine isomers using two dimensional liquid chromatography coupled in-line with ozonolysis mass spectrometry. J. Chromatogr. A. 1351, 37–45 (2014)CrossRefGoogle Scholar
  40. 40.
    Sun, C., Zhao, Y.-Y., Curtis, J.M.: The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry. Anal. Chim. Acta. 762, 68–75 (2013)CrossRefGoogle Scholar
  41. 41.
    Sun, C., Black, B.A., Zhao, Y.-Y., Gänzle, M.G., Curtis, J.M.: Identification of conjugated linoleic acid (CLA) isomers by silver ion-liquid chromatography/in-line ozonolysis/mass spectrometry (Ag+-LC/O3-MS). Anal. Chem. 85, 7345–7352 (2013)CrossRefGoogle Scholar
  42. 42.
    Chang, J.-S., Lawless, P.A., Yamamoto, T.: Corona discharge processes. IEEE Trans. Plasma Sci. 19, 1152–1166 (1991)CrossRefGoogle Scholar
  43. 43.
    Dohan, J.M., Masschelein, W.J.: The photochemical generation of ozone : present state-of-the-art. Ozone Sci. Eng. 9, 315–334 (1987)CrossRefGoogle Scholar
  44. 44.
    Liebisch, G., Vizcaíno, J.A., Köfeler, H., Trötzmüller, M., Griffiths, W.J., Schmitz, G., Spener, F., Wakelam, M.J.O.: Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523–1530 (2013)CrossRefGoogle Scholar
  45. 45.
    Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R.H., Shimizu, T., Spener, F., van Meer, G., Wakelam, M.J.O., Dennis, E.A.: Update of the lipid maps comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009)CrossRefGoogle Scholar
  46. 46.
    Pozniak, B.P., Cole, R.B.: Ambient gas influence on electrospray potential as revealed by potential mapping within the electrospray capillary. Anal. Chem. 79, 3383–3391 (2007)CrossRefGoogle Scholar
  47. 47.
    Grimm, R.L., Hodyss, R., Beauchamp, J.L.: Probing interfacial chemistry of single droplets with field-induced droplet ionization mass spectrometry: physical adsorption of polycyclic aromatic hydrocarbons and ozonolysis of oleic acid and related compounds. Anal. Chem. 78, 3800–3806 (2006)CrossRefGoogle Scholar
  48. 48.
    Schiaffo, C.E., Dussault, P.H.: Ozonolysis in solvent/water mixtures: direct conversion of alkenes to aldehydes and ketones. J. Org. Chem. 73, 4688–4690 (2008)CrossRefGoogle Scholar
  49. 49.
    Staehelin, J., Hoigne, J.: Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 16, 676–681 (1982)CrossRefGoogle Scholar
  50. 50.
    Zoschke, K., Börnick, H., Worch, E.: Vacuum-UV radiation at 185 nm in water treatment – a review. Water Res. 52, 131–145 (2014)CrossRefGoogle Scholar
  51. 51.
    Catalá, A.: Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids. 157, 1–11 (2009)CrossRefGoogle Scholar
  52. 52.
    Adam, W., Oppenländer, T.: 185-nm photochemistry of olefins, strained hydrocarbons, and azoalkanes in solution. Angew. Chem. Int. Ed. 25, 661–672 (1986)CrossRefGoogle Scholar
  53. 53.
    Pham, H.T., Maccarone, A.T., Campbell, J.L., Mitchell, T.W., Blanksby, S.J., Maccarone, A.T.: Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characterisctic odd-electron product ions. J. Am. Soc. Mass Spectrom. 24, 289–296 (2013)Google Scholar
  54. 54.
    Avzianova, E.V., Ariya, P.A.: Temperature-dependent kinetic study for ozonolysis of selected tropospheric alkenes. In. J. Chem. Kinet. 34, 678–684 (2002)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Intel CorporationHillsboroUSA
  3. 3.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations