Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry

  • Sam B. Choi
  • Camille Lombard-Banek
  • Pablo Muñoz-LLancao
  • M. Chiara Manzini
  • Peter Nemes
Focus: 29th Sanibel Conference, Peptidomics: Bridging the Gap Between Proteomics and Metabolomics by MS: Research Article

Abstract

The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An ~1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates ~274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to ~57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or ~480 protein groups (~1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest (~a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization.

Graphical abstract

Keywords

Capillary electrophoresis Mass spectrometry Fractionation Bottom-up proteomics Neurons Hippocampus Mouse Central nervous system 

Notes

Acknowledgments

This work was supported by the Arnold and Mabel Beckman Foundation Young Investigator Grant (to P.N.), the American Society for Mass Spectrometry Research Award (to P.N.), the DuPont Young Professor Award (to P.N.), and Cosmos Club Foundation Fellowships (to S.B.C. and C.L-B.).

Author Contributions

P.N., S.B.C., and C.L-B. designed the research; P.M-L. and M.C.M. provided the neuron cultures; S.B.C. and C.L-B. processed the samples; S.B.C. measured the samples; P.N. and S.B.C. analyzed the data; P.N. and S.B.C. wrote the manuscript. All authors commented on the manuscript.

Supplementary material

13361_2017_1838_MOESM1_ESM.xlsx (326 kb)
ESM 1 (XLSX 326 kb)

References

  1. 1.
    Sharma, K., Schmitt, S., Bergner, C.G., Tyanova, S., Kannaiyan, N., Manrique-Hoyos, N.: Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015)CrossRefGoogle Scholar
  2. 2.
    Johnson, M.B., Wang, P.P., Atabay, K.D., Murphy, E.A., Doan, R.N., Hecht, J.L.: Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–647 (2015)CrossRefGoogle Scholar
  3. 3.
    Lengler, J., Jug, F., Steger, A.: Reliable neuronal systems: the importance of heterogeneity. PLoS One. 8, (e80694), (2013)Google Scholar
  4. 4.
    Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M.: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 166, 1308–1323 (2016)CrossRefGoogle Scholar
  5. 5.
    Choi, S.B., Zamarbide, M., Manzini, M.C., Nemes, P.: Tapered-tip capillary electrophoresis nano-electrospray ionization mass spectrometry for ultrasensitive proteomics: the mouse cortex. J. Am. Soc. Mass Spectrom. 28, 597–607 (2017)CrossRefGoogle Scholar
  6. 6.
    Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R.: A draft map of the human proteome. Nature. 509, 575–581 (2014)CrossRefGoogle Scholar
  7. 7.
    Washburn, M.P., Wolters, D., Yates, J.R.: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001)CrossRefGoogle Scholar
  8. 8.
    Dowell, J.A., Frost, D.C., Zhang, J., Li, L.J.: Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal. Chem. 80, 6715–6723 (2008)CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Fang, A.Q., Riley, C.P., Wang, M., Regnier, F.E., Buck, C.: Multi-dimensional liquid chromatography in proteomics. Anal. Chim. Acta. 664, 101–113 (2010)CrossRefGoogle Scholar
  10. 10.
    Wisniewski, J.R., Zougman, A., Mann, M.: Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, H., Sun, S.N., Zhang, Y., Chen, S., Liu, P., Liu, B.: An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines. J. Chromatogr. B. 974, 90–95 (2015)CrossRefGoogle Scholar
  12. 12.
    Gilar, M., Olivova, P., Daly, A.E., Gebler, J.C.: Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694–1703 (2005)CrossRefGoogle Scholar
  13. 13.
    Gokce, E., Andrews, G.L., Dean, R.A., Muddiman, D.C.: Increasing proteome coverage with offline RP HPLC coupled to online RP nanoLC-MS. J. Chromatogr. B. 879, 610–614 (2011)CrossRefGoogle Scholar
  14. 14.
    Li, S.Y., Plouffe, B.D., Belov, A.M., Ray, S., Wang, X.Z., Murthy, S.K.: An integrated platform for isolation, processing, and mass spectrometry-based proteomic profiling of rare cells in whole blood. Mol. Cell. Proteom. 14, 1672–1683 (2015)CrossRefGoogle Scholar
  15. 15.
    Kulak, N.A., Geyer, P.E., Mann, M.: Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteom. 16, 694–705 (2017)CrossRefGoogle Scholar
  16. 16.
    Romanova, E.V., Aerts, J.T., Croushore, C.A., Sweedler, J.V.: Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology. 39, 50–64 (2014)CrossRefGoogle Scholar
  17. 17.
    Harstad, R.K., Johnson, A.C., Weisenberger, M.M., Bowser, M.T.: Capillary electrophoresis. Anal. Chem. 88, 299–319 (2016)CrossRefGoogle Scholar
  18. 18.
    Dawod, M., Arvin, N.E., Kennedy, R.T.: Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst. 142, 1847–1866 (2017)CrossRefGoogle Scholar
  19. 19.
    Slampova, A., Mala, Z., Gebauer, P., Bocek, P.: Recent progress of sample stacking in capillary electrophoresis (2014–2016). Electrophoresis. 38, 20–32 (2017)CrossRefGoogle Scholar
  20. 20.
    Lombard-Banek, C., Moody, S.A., Nemes, P.: Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew. Chem. Int. Ed. 55, 2454–2458 (2016)Google Scholar
  21. 21.
    Sun, L.L., Hebert, A.S., Yan, X.J., Zhao, Y.M., Westphall, M.S., Rush, M.J.P.: Over 10,000 peptide identifications from the HeLa proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry. Angew. Chem. Int. Ed. 53, 13931–13933 (2014)CrossRefGoogle Scholar
  22. 22.
    Lombard-Banek, C., Reddy, S., Moody, S.A., Nemes, P.: Label-free quantification of proteins in single embryonic cells with neural fate in the cleavage-stage frog (Xenopus laevis) embryo using capillary electrophoresis electrospray ionization high-resolution mass spectrometry (CE-ESI-HRMS). Mol. Cell. Proteom. 15, 2756–2768 (2016)CrossRefGoogle Scholar
  23. 23.
    Han, X., Wang, Y., Aslanian, A., Bern, M., Lavallee-Adam, M., Yates, J.R.: Sheathless capillary electrophoresis-tandem mass spectrometry for top-down characterization of pyrococcus furiosus proteins on a proteome scale. Anal. Chem. 86, 11006–11012 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhao, Y.M., Sun, L.L., Zhu, G.J., Dovichi, N.J.: Coupling capillary zone electrophoresis to a Q Exactive HF mass spectrometer for top-down proteomics: 580 proteoform identifications from yeast. J. Proteome Res. 15, 3679–3685 (2016)CrossRefGoogle Scholar
  25. 25.
    Hofstadler, S.A., Severs, J.C., Smith, R.D., Swanek, F.D., Ewing, A.G.: Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10, 919–922 (1996)CrossRefGoogle Scholar
  26. 26.
    Mellors, J.S., Jorabchi, K., Smith, L.M., Ramsey, J.M.: Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 82, 967–973 (2010)CrossRefGoogle Scholar
  27. 27.
    Valaskovic, G.A., Kelleher, N.L., McLafferty, F.W.: Attomole protein characterization by capillary electrophoresis mass spectrometry. Science. 273, 1199–1202 (1996)CrossRefGoogle Scholar
  28. 28.
    Moini, M., Demars, S.M., Huang, H.L.: Analysis of carbonic anhydrase in human red blood cells using capillary electrophoresis/electrospray ionization-mass spectrometry. Anal. Chem. 74, 3772–3776 (2002)CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Fonslow, B.R., Wong, C.C.L., Nakorchevsky, A., Yates, J.R.: Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal. Chem. 84, 8505–8513 (2012)CrossRefGoogle Scholar
  30. 30.
    Sun, L.L., Zhu, G.J., Zhao, Y.M., Yan, X.J., Mou, S., Dovichi, N.J.: Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew. Chem. Int. Ed. 52, 13661–13664 (2013)CrossRefGoogle Scholar
  31. 31.
    Chen, Q., Yan, G.Q., Gao, M.X., Zhang, X.M.: Direct digestion of proteins in living cells into peptides for proteomic analysis. Anal. Bioanal. Chem. 407, 1027–1032 (2015)CrossRefGoogle Scholar
  32. 32.
    Comi, T.J., Do, T.D., Rubakhin, S.S., Sweedler, J.V.: Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J. Am. Chem. Soc. 139, 3920–3929 (2017)CrossRefGoogle Scholar
  33. 33.
    Faserl, K., Kremser, L., Muller, M., Teis, D., Lindner, H.H.: Quantitative proteomics using ultra low flow capillary electrophoresis-mass spectrometry. Anal. Chem. 87, 4633–4640 (2015)CrossRefGoogle Scholar
  34. 34.
    Yan, X.J., Sun, L.L., Zhu, G.J., Cox, O.F., Dovichi, N.J.: Over 4100 protein identifications from a Xenopus laevis fertilized egg digest using reversed-phase chromatographic prefractionation followed by capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry analysis. Proteomics. 16, 2945–2952 (2016)CrossRefGoogle Scholar
  35. 35.
    Chen, D., Shen, X., Sun, L.: Capillary zone electrophoresis-mass spectrometry with microliter-scale loading capacity, 140 min separation window and high peak capacity for bottom-up proteomics. Analyst. 142, 2118–2127 (2017)CrossRefGoogle Scholar
  36. 36.
    Zhang, Z.B., Yan, X.J., Sun, L.L., Zhu, G.J., Dovichi, N.J.: Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes. Anal. Chem. 87, 4572–4577 (2015)CrossRefGoogle Scholar
  37. 37.
    Zhang, Z.B., Sun, L.L., Zhu, G.J., Cox, O.F., Huber, P.W., Dovichi, N.J.: Nearly 1000 protein identifications from 50 ng of Xenopus laevis zygote homogenate using online sample preparation on a strong cation exchange monolith based microreactor coupled with capillary zone electrophoresis. Anal. Chem. 88, 877–882 (2016)CrossRefGoogle Scholar
  38. 38.
    Kaech, S., Banker, G.: Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y.Y., Fonslow, B.R., Shan, B., Baek, M.C., Yates, J.R.: Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013)CrossRefGoogle Scholar
  40. 40.
    Cox, J., Mann, M.: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008)CrossRefGoogle Scholar
  41. 41.
    Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Mann, M.: Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011)CrossRefGoogle Scholar
  42. 42.
    Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Mann, M.: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014)CrossRefGoogle Scholar
  43. 43.
    Spicer, V., Grigoryan, M., Gotfrid, A., Standing, K.G., Krokhin, O.V.: Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC. Anal. Chem. 82, 9678–9685 (2010)CrossRefGoogle Scholar
  44. 44.
    Sun, B., Kovatch, J.R., Badiong, A., Merbouh, N.: Optimization and modeling of quadrupole orbitrap parameters for sensitive analysis toward single-cell proteomics. J. Proteome Res. 16, 3711–3721 (2017)CrossRefGoogle Scholar
  45. 45.
    Pollen, A.A., Nowakowski, T.J., Shuga, J., Wang, X.H., Leyrat, A.A., Lui, J.H.: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014)CrossRefGoogle Scholar
  46. 46.
    Grassi, D., Plonka, F.B., Oksdath, M., Guil, A.N., Sosa, L.J., Quiroga, S.: Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons. Cell Discov. 1, 15023 (2015)CrossRefGoogle Scholar
  47. 47.
    Jurado, S., Goswami, D., Zhang, Y.S., Molina, A.J.M., Sudhof, T.C., Malenka, R.C.: LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77, 542–558 (2013)Google Scholar
  48. 48.
    Menezes, J.R.L., Luskin, M.B.: Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci. 14, 5399–5416 (1994)Google Scholar
  49. 49.
    Keays, D.A., Tian, G., Poirier, K., Huang, G.J., Siebold, C., Cleak, J.: Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell. 128, 45–57 (2007)CrossRefGoogle Scholar
  50. 50.
    Doherty, P., Cohen, J., Walsh, F.S.: Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5, 209–219 (1990)Google Scholar
  51. 51.
    Bukalo, O., Fentrop, N., Lee, A.Y.W., Salmen, B., Law, J.W.S., Wotjak, C.T.: Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J. Neurosci. 24, 1565–1577 (2004)CrossRefGoogle Scholar
  52. 52.
    Gonzalez-Billault, C., Jimenez-Mateos, E.M., Caceres, A., Diaz-Nido, J., Wandosell, F., Avila, J.: Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J. Neurobiol. 58, 48–59 (2004)CrossRefGoogle Scholar
  53. 53.
    Francis, F., Friocourt, G., Chafey, P., Vinet, M.C., Koulakoff, A., Cheesman, E.: Doublecortin is a developmentally regulated microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999)Google Scholar
  54. 54.
    Nawabi, H., Belin, S., Cartoni, R., Williams, P.R., Wang, C., Latremoliere, A.: Doublecortin-like kinases promote neuronal survival and induce growth cone reformation via distinct mechanisms. Neuron 88, 704–719 (2015)Google Scholar
  55. 55.
    Des Portes, V., Francis, F., Pinard, J.M., Desguerre, I., Moutard, M.L., Snoeck, I.: Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063–1070 (1998)CrossRefGoogle Scholar
  56. 56.
    Etherton, M., Foldy, C., Sharma, M., Tabuchi, K., Liu, X.R., Shamloo, M.: Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl. Acad. Sci. USA. 108, 13764–13769 (2011)CrossRefGoogle Scholar
  57. 57.
    Bretin, S., Reibel, S., Charrier, E., Maus-Moatti, M., Auvergnon, N., Thevenoux, A.: Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J. Comp. Neurol. 486, 1–17 (2005)CrossRefGoogle Scholar
  58. 58.
    Heinzen, E.L., Arzimanoglou, A., Brashear, A., Clapcote, S.J., Gurrieri, F., Goldstein, D.B.: Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 13, 503–514 (2014)CrossRefGoogle Scholar
  59. 59.
    Ghosh, A., Giese, K.P.: Calcium/calmodulin-dependent kinase II and Alzheimer's disease. Mol. Brain. 8, 78 (2015)CrossRefGoogle Scholar
  60. 60.
    Deak, F., Schoch, S., Liu, X.R., Sudhof, T.C., Kavalali, E.T.: Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat. Cell Biol. 6, 1102–1108 (2004)CrossRefGoogle Scholar
  61. 61.
    Chapman, E.R., An, S., Barton, N., Jahn, R.: Snap-25, a t-snare which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27427–27432 (1994)Google Scholar
  62. 62.
    Sudhof, T.C.: Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Department of ChemistryThe George Washington UniversityWashingtonUSA
  2. 2.Institute for Neuroscience, Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations