Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave

  • Jean R. N. Haler
  • Philippe Massonnet
  • Fabien Chirot
  • Christopher Kune
  • Clothilde Comby-Zerbino
  • Jan Jordens
  • Maarten Honing
  • Ynze Mengerink
  • Johann Far
  • Philippe Dugourd
  • Edwin De Pauw
Research Article


Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments.

Graphical abstract


Ion mobility Mass spectrometry TIMS Drift tube Traveling wave Synthetic polymers Poly (ethylene oxide) 



The authors thank the F.R.S.-FNRS for the financial support (Jean R. N. Haler and Philippe Massonnet are F.R.I.A. doctorate fellows). Bruker is acknowledged for their TIMS instrument and software support. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013 Grant agreement N°320659).

Compliance with ethical standards

Conflict of interest disclosure

The authors declare no competing financial interest.

Supplementary material

13361_2017_1822_MOESM1_ESM.pdf (963 kb)
ESM 1 (PDF 962 kb)


  1. 1.
    Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)CrossRefGoogle Scholar
  2. 2.
    Hilton, G.R., Jackson, A.T., Thalassinos, K., Scrivens, J.H.: Structural analysis of synthetic polymer mixtures using ion mobility and tandem mass spectrometry. Anal. Chem. 80, 9720–9725 (2008)CrossRefGoogle Scholar
  3. 3.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)CrossRefGoogle Scholar
  4. 4.
    Katzenmeyer, B.C., Hague, S.F., Wesdemiotis, C.: Multidimensional mass spectrometry coupled with separation by polarity or shape for the characterization of sugar-based nonionic surfactants. Anal. Chem. 88, 851–857 (2016)CrossRefGoogle Scholar
  5. 5.
    Gidden, J., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions. Int. J. Mass Spectrom. 188, 121–130 (1999)CrossRefGoogle Scholar
  6. 6.
    Gidden, J., Wyttenbach, T., Batka, J.J., Weis, P., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Poly(ethylene terephthalate) oligomers cationized by alkali ions: structures, energetics, and their effect on mass spectra and the matrix-assisted laser desorption/ionization process. J. Am. Soc. Mass Spectrom. 10, 883–895 (1999)CrossRefGoogle Scholar
  7. 7.
    Gidden, J., Bowers, M.T., Jackson, A.T., Scrivens, J.H.: Gas-phase conformations of cationized poly(styrene) oligomers. J. Am. Soc. Mass Spectrom. 13, 499–505 (2002)CrossRefGoogle Scholar
  8. 8.
    von Helden, G., Wyttenbach, T., Bowers, M.T.: Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. Ion Processes. 146/147, 349–364 (1995)CrossRefGoogle Scholar
  9. 9.
    Larriba, C., Fernandez de la Mora, J.: The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B. 116, 593–598 (2012)CrossRefGoogle Scholar
  10. 10.
    Trimpin, S., Plasencia, M., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)CrossRefGoogle Scholar
  11. 11.
    Ude, S., Fernández de la Mora, J., Thomson, B.A.: Charge-induced unfolding of multiply charged polyethylene glycol ions. J. Am. Chem. Soc. 126, 12184–12190 (2004)CrossRefGoogle Scholar
  12. 12.
    Morsa, D., Defize, T., Dehareng, D., Jérôme, C., De Pauw, E.: Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal. Chem. 86, 9693–9700 (2014)CrossRefGoogle Scholar
  13. 13.
    Kim, K., Lee, J.W., Chang, T., Kim, H.I.: Characterization of polylactides with different stereoregularity using electrospray ionization ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1771–1779 (2014)CrossRefGoogle Scholar
  14. 14.
    Fernandez-Lima, F., Kaplan, D.A., Suetering, J., Park, M.A.: Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14, (2011)Google Scholar
  15. 15.
    Michelmann, K., Silveira, J.A., Ridgeway, M.E., Park, M.A.: Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26, 14–24 (2015)CrossRefGoogle Scholar
  16. 16.
    Silveira, J.A., Ridgeway, M.E., Park, M.A.: High resolution trapped ion mobility spectrometery of peptides. Anal. Chem. 86, 5624–5627 (2014)CrossRefGoogle Scholar
  17. 17.
    Hernandez, D.R., Debord, J.D., Ridgeway, M.E., Kaplan, D.A., Park, M.A., Fernandez-Lima, F.: Ion dynamics in a trapped ion mobility spectrometer. Analyst. 139, 1913–1921 (2014)CrossRefGoogle Scholar
  18. 18.
    Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83, 5775–5782 (2011)CrossRefGoogle Scholar
  19. 19.
    Morsa, D., Gabelica, V., De Pauw, E.: Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1384–1393 (2014)CrossRefGoogle Scholar
  20. 20.
    Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23, 553–562 (2012)CrossRefGoogle Scholar
  21. 21.
    Shvartsburg, A.A., Li, F., Tang, K., Smith, R.D.: Distortion of Ion structures by field asymmetric waveform ion mobility spectrometry. (2007)Google Scholar
  22. 22.
    Chen, S.H., Russell, D.H.: How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J. Am. Soc. Mass Spectrom. 26, 1433–1443 (2015)CrossRefGoogle Scholar
  23. 23.
    Liu, F.C., Kirk, S.R., Bleiholder, C.: On the structural denaturation of biological analytes in trapped ion mobility spectrometry-mass spectrometry. Analyst. 141, 3722–3730 (2016)CrossRefGoogle Scholar
  24. 24.
    Hudgins, R.R., Dugourd, P., Tenenbaum, J.M., Jarrold, M.F.: Structural transitions in sodium chloride nanocrystals. Phys. Rev. Lett. 78, 4213–4216 (1997)CrossRefGoogle Scholar
  25. 25.
    Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)CrossRefGoogle Scholar
  26. 26.
    Wyttenbach, T., von Helden, G., Bowers, M.T.: Conformations of alkali ion cationized polyethers in the gas phase: polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl] pimelate. Int. J. Mass Spectrom. Ion Processes. 165/166, 377–390 (1997)CrossRefGoogle Scholar
  27. 27.
    Simon, A.-L., Chirot, F., Min Choi, C., Clavier, C., Barbaire, M., Maurelli, J., Dagany, X., MacAleese, L., Dugourd, P.: Tandem ion mobility spectrometry coupled to laser excitation. Rev. Sci. Instrum. 86, 94101 (2015)CrossRefGoogle Scholar
  28. 28.
    Mason, E.A., McDaniel, E.W.: Transport properties of ions in gases. Wiley, New York (1988)CrossRefGoogle Scholar
  29. 29.
    Flanagan, J.M.: Mass spectrometry calibration using homogeneously substituted fluorinated triazatriphosphorines. US 5872357 A (1999)Google Scholar
  30. 30.
    De Winter, J., Lemaur, V., Ballivian, R., Chirot, F., Coulembier, O., Antoine, R., Lemoine, J., Cornil, J., Dubois, P., Dugourd, P., Gerbaux, P.: Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modeling. Chem. A Eur. J. 17, 9738–9745 (2011)CrossRefGoogle Scholar
  31. 31.
    Lapthorn, C., Pullen, F., Chowdhry, B., Allen, M., Perkins, G., Dines, T., Mccullagh, M.: The effect of charge location in ion mobility mass spectrometry for small molecule analytes. 2009 (2012)Google Scholar
  32. 32.
    Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)CrossRefGoogle Scholar
  33. 33.
    Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • Jean R. N. Haler
    • 1
  • Philippe Massonnet
    • 1
  • Fabien Chirot
    • 2
  • Christopher Kune
    • 1
  • Clothilde Comby-Zerbino
    • 3
  • Jan Jordens
    • 4
  • Maarten Honing
    • 4
  • Ynze Mengerink
    • 4
  • Johann Far
    • 1
  • Philippe Dugourd
    • 3
  • Edwin De Pauw
    • 1
  1. 1.Mass Spectrometry LaboratoryUniversity of LiègeLiègeBelgium
  2. 2.Institut des Sciences AnalytiquesUniversité de LyonVilleurbanneFrance
  3. 3.Institut Lumière MatièreUniversité de LyonVilleurbanneFrance
  4. 4.DSM ResolveGeleenThe Netherlands

Personalised recommendations