Comment on: “Quantum Chemical Mass Spectrometry: Verification and Extension of the Mobile Proton Model for Histidine” by Julie Cautereels and Frank Blockhuys, J. Am. Soc. Mass Spectrom. 28, 1227-1235 (2017)

  • Benjamin J. Bythell


  1. 1.
    Cautereels, J., Blockhuys, F.: Quantum chemical mass spectrometry: verification and extension of the mobile proton model for histidine. J. Am. Soc. Mass Spectrom. 28, 1227–1235 (2017)CrossRefGoogle Scholar
  2. 2.
    Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: Why are b ions stable species in peptide spectra? J. Am. Soc. Mass Spectrom. 6, 1165–1174 (1995)CrossRefGoogle Scholar
  3. 3.
    Cordero, M.M., Houser, J.J., Wesdemiotis, C.: Neutral products formed during backbone fragmentations of protonated peptides in tandem mass spectrometry. Anal. Chem. 65, 1594–1601 (1993)CrossRefGoogle Scholar
  4. 4.
    Perkins, B.R., Chamot-Rooke, J., Yoon, S.H., Gucinski, A.C., Somogyi, A., Wysocki, V.H.: Evidence of diketopiperazine and oxazolone structures for HA b2+ Ion. J. Am. Chem. Soc. 131, 17528–17529 (2009)CrossRefGoogle Scholar
  5. 5.
    Knapp-Mohammady, M., Young, A.B., Paizs, B., Harrison, A.G.: Fragmentation of doubly protonated pro-his-xaa tripeptides: formation of b22+ ions. J. Am. Soc. Mass Spectrom. 20, 2135–2143 (2009)CrossRefGoogle Scholar
  6. 6.
    Nelson, C.R., Abutokaikah, M.T., Harrison, A.G., Bythell, B.J.: Proton mobility in b2 ion formation and fragmentation reactions of histidine-containing peptides. J. Am. Soc. Mass Spectrom. 27, 487–497 (2016)CrossRefGoogle Scholar
  7. 7.
    Gucinski, A.C., Chamot-Rooke, J., Nicol, E., Somogyi, Á., Wysocki, V.H.: Structural influences on preferential oxazolone versus diketopiperazine b2+ ion formation for histidine analogue-containing peptides. J. Phys. Chem. A. 116, 4296–4304 (2012)CrossRefGoogle Scholar
  8. 8.
    Savitski, M.M., Faelth, M., Fung, Y.M.E., Adams, C.M., Zubarev, R.A.: Bifurcating fragmentation behavior of gas-phase tryptic peptide dications in collisional activation. J. Am. Soc. Mass Spectrom. 19, 1755–1763 (2008)CrossRefGoogle Scholar
  9. 9.
    Liu, P., Cooks, R.G., Chen, H.: Structure elucidation of peptide b2 Ions. Angew. Chem. Int. Ed. 54, 1547–1550 (2015)CrossRefGoogle Scholar
  10. 10.
    Morrison, L.J., Chamot-Rooke, J., Wysocki, V.H.: IR action spectroscopy shows competitive oxazolone and diketopiperazine formation in peptides depends on peptide length and identity of terminal residue in the departing fragment. Analyst. 139, 2137–2143 (2014)CrossRefGoogle Scholar
  11. 11.
    Poutsma, J.C., Martens, J.,Oomens, J., Maitre, P., Steinmetz, V., Bernier, M., Jia, M., Wysocki, V.: Infrared multiple-photon dissociation action spectroscopy of the b ion from PPG: Evidence of third residue affecting b fragment structure. J. Am. Soc. Mass Spectrom. 28, 1482–1488 (2017)Google Scholar
  12. 12.
    Somogyi, A., Wysocki, V.H., Mayer, I.: The effect of protonation site on bond strengths in simple peptides: application of ab initio and modified neglect of differential overlap bond orders and modified neglect of differential overlap energy partitioning. J. Am. Soc. Mass Spectrom. 5, 704–717 (1994)CrossRefGoogle Scholar
  13. 13.
    Bythell, B.J., Suhai, S., Somogyi, A., Paizs, B.: Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J. Am. Chem. Soc. 131, 14057–14065 (2009)CrossRefGoogle Scholar
  14. 14.
    van Stipdonk, M.J., Kullman, M.J., Berden, G., Oomens, J.: Infrared multiple-photon dissociation spectroscopy of deprotonated 6-hydroxynicotinic acid. Rapid Commun. Mass Spectrom. 28, 691–698 (2014)CrossRefGoogle Scholar
  15. 15.
    Bythell, B.J., Csonka, I.P., Suhai, S., Barofsky, D.F., Paizs, B.: Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. J. Phys. Chem. B. 114, 15092–15105 (2010)CrossRefGoogle Scholar
  16. 16.
    Shek, P.Y.I., Lau, J.K.-C., Zhao, J., Grzetic, J., Verkerk, U.H., Oomens, J., Hopkinson, A.C., Siu, K.W.M.: Fragmentations of protonated cyclic-glycylglycine and cyclic-alanylalanine. Int. J. Mass Spectrom. 316/318, 199–205 (2012)CrossRefGoogle Scholar
  17. 17.
    Armentrout, P.B., Clark, A.A.: The simplest b2+ ion: determining its structure from its energetics by a direct comparison of the threshold collision-induced dissociation of protonated oxazolone and diketopiperazine. Int. J. Mass Spectrom. 316/318, 182–191 (2012)CrossRefGoogle Scholar
  18. 18.
    Bythell, B.J., Marshall, A.G., Hendrickson, C.L.: Relative stability of peptide sequence ions generated by tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 23, 644–654 (2011)CrossRefGoogle Scholar
  19. 19.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000)CrossRefGoogle Scholar
  20. 20.
    Tsaprailis, G., Nair, H., Zhong, W., Kuppannan, K., Futrell, J.H., Wysocki, V.H.: A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Anal. Chem. 76, 2083–2094 (2004)CrossRefGoogle Scholar
  21. 21.
    Farrugia, J.M., Taverner, T., O'Hair, R.A.J.: Side-chain involvement in the fragmentation reactions of the protonated methyl esters of histidine and its peptides. Int. J. Mass Spectrom. 209, 99–112 (2001)CrossRefGoogle Scholar
  22. 22.
    Mookherjee, A., Van Stipdonk, M.J., Armentrout, P.B.: Thermodynamics and reaction mechanisms of decomposition of the simplest protonated tripeptide, triglycine: a guided ion beam and computational study. J. Am. Soc. Mass Spectrom. 28, 739–757 (2017)CrossRefGoogle Scholar
  23. 23.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom.Rev. 24, 508–548 (2005)CrossRefGoogle Scholar
  24. 24.
    Haeffner, F., Merle, J.K., Irikura, K.K.: N-protonated isomers as gateways to peptide ion fragmentation. J. Am. Soc. Mass Spectrom. 22, 2222–2231 (2011)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations