Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification

  • Chiara Masellis
  • Neelam Khanal
  • Michael Z. Kamrath
  • David E. Clemmer
  • Thomas R. Rizzo
Research Article


The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience.

Graphical Abstract


Cryogenic vibrational spectroscopy Mass spectrometry Ion mobility Glycans Glycan analysis 



T.R.R. thanks the École Polytechnixque Fédérale de Lausanne and the Swiss National Science Foundation (grant number 200020_165908) for their financial support of this work. D.E.C. thanks the National Institutes of Health for partial support of this work through grant R01 GM103725. N.K. was supported by a Robert & Marjorie Mann Fellowship from Indiana University.

Supplementary material

13361_2017_1728_MOESM1_ESM.docx (542 kb)
ESM 1 (DOCX 542 kb)


  1. 1.
    Varki A, Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E. (eds.): Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
  2. 2.
    National Research Council. 2012. Transforming Glycoscience: A Roadmap for the Future. Washington, DC: The National Academies Press. doi: 10.17226/13446.
  3. 3.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)CrossRefGoogle Scholar
  4. 4.
    Hounsell, E.F., Davies, M.J., Renouf, D.V.: O-linked protein glycosylation structure and function. Glycoconj. J. 13, 19–26 (1996)CrossRefGoogle Scholar
  5. 5.
    Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999)CrossRefGoogle Scholar
  6. 6.
    Han, L., Costello, C.E.: Mass spectrometry of glycans. Biochemistry (Moscow) 78(710–720) (2013)Google Scholar
  7. 7.
    Yu, X., Jiang, Y., Chen, Y., Huang, Y., Costello, C.E., Lin, C.: Detailed glycan structural characterization by electronic excitation dissociation. Anal. Chem. 85, 10017–10021 (2013)CrossRefGoogle Scholar
  8. 8.
    Han, L., Costello, C.E.: Electron transfer dissociation of milk oligosaccharides. J. Am. Soc. Mass Spectrom. 22, 997–1013 (2011)CrossRefGoogle Scholar
  9. 9.
    Ren, R., Hong, Z., Gong, H., Laporte, K., Skinner, M., Seldin, D.C., Costello, C.E., Connors, L.H., Trinkaus-Randall, V.: Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J. Biol. Chem. 285, 37672–37682 (2010)CrossRefGoogle Scholar
  10. 10.
    Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B., Amster, I.J.: Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86, 196–212 (2014)CrossRefGoogle Scholar
  11. 11.
    Hofmann, J., Hahm, H.S., Seeberger, P.H., Pagel, K.: Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature 526, 241–244 (2015)CrossRefGoogle Scholar
  12. 12.
    Pagel, K., Harvey, D.J.: Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal. Chem. 85, 5138–5145 (2013)CrossRefGoogle Scholar
  13. 13.
    Gaye, M.M., Kurulugama, R., Clemmer, D.E.: Investigating carbohydrate isomers by IMS-CID-IMS-MS: precursor and fragment ion cross-sections. Analyst 140, 6922–6932 (2015)CrossRefGoogle Scholar
  14. 14.
    Gaye, M.M., Nagy, G., Clemmer, D.E., Pohl, N.L.: Multidimensional analysis of 16 glucose isomers by ion mobility spectrometry. Anal. Chem. 88, 2335–2344 (2016)CrossRefGoogle Scholar
  15. 15.
    Isailovic, D., Plasencia, M.D., Gaye, M.M., Stokes, S.T., Kurulugama, R.T., Pungpapong, V., Zhang, M., Kyselova, Z., Goldman, R., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Delineating diseases by IMS-MS profiling of serum N-linked glycans. J. Proteome Res. 11, 576–585 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhu, F., Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Mannose7 glycan isomer characterization by IMS-MS/MS analysis. J. Am. Soc. Mass Spectrom. 23, 2158–2166 (2012)CrossRefGoogle Scholar
  17. 17.
    Seo, Y., Andaya, A., Leary, J.A.: Preparation, separation, and conformational analysis of differentially sulfated heparin octasaccharide isomers using ion mobility mass spectrometry. Anal. Chem. 84, 2416–2423 (2012)CrossRefGoogle Scholar
  18. 18.
    Both, P., Green, A.P., Gray, C.J., Sardzik, R., Voglmeir, J., Fontana, C., Austeri, M., Rejzek, M., Richardson, D., Field, R.A., Widmalm, G., Flitsch, S.L., Eyers, C.E.: Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014)CrossRefGoogle Scholar
  19. 19.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass. Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  20. 20.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhu, M., Bendiak, B., Clowers, B., Hill Jr., H.H.: Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal. Bioanal. Chem. 394, 1853–1867 (2009)CrossRefGoogle Scholar
  22. 22.
    Masson, A., Kamrath, M.Z., Perez, M.A., Glover, M.S., Rothlisberger, U., Clemmer, D.E., Rizzo, T.R.: Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J. Am. Soc. Mass Spectrom. 26, 1444–1454 (2015)CrossRefGoogle Scholar
  23. 23.
    Hernandez, O., Isenberg, S., Steinmetz, V., Glish, G.L., Maitre, P.: Probing mobility-selected saccharide isomers: selective ion-molecule reactions and wavelength-specific IR activation. J. Phys. Chem. A 119, 6057–6064 (2015)CrossRefGoogle Scholar
  24. 24.
    Polfer, N.C., Valle, J.J., Moore, D.T., Oomens, J., Eyler, J.R., Bendiak, B.: Differentiation of isomers by wavelength-tunable infrared multiple-photon dissociation-mass spectrometry: application to glucose-containing disaccharides. Anal. Chem. 78, 670–679 (2006)CrossRefGoogle Scholar
  25. 25.
    Tan, Y.L., Polfer, N.C.: Linkage and anomeric differentiation in trisaccharides by sequential fragmentation and variable-wavelength infrared photodissociation. J. Am. Soc. Mass Spectrom. 26, 359–368 (2015)CrossRefGoogle Scholar
  26. 26.
    Gray, C.J., Schindler, B., Migas, L.G., Pičmanová, M., Allouche, A.R., Green, A.P., Mandal, S., Motawia, M.S., Sánchez-Pérez, R., Bjarnholt, N., Møller, B.L., Rijs, A.M., Barran, P.E., Compagnon, I., Eyers, C.E., Flitsch, S.L.: Bottom-up elucidation of glycosidic bond stereochemistry. Anal. Chem. 89, 4540–4549 (2017)CrossRefGoogle Scholar
  27. 27.
    Schindler, B., Barnes, L., Gray, C.J., Chambert, S., Flitsch, S.L., Oomens, J., Daniel, R., Allouche, A.R., Compagnon, I.: IRMPD spectroscopy sheds new (infrared) light on the sulfate pattern of carbohydrates. J. Phys. Chem. A 121, 2114–2120 (2017)CrossRefGoogle Scholar
  28. 28.
    Mucha, E., González Flórez, A.I., Marianski, M., Thomas, D.A., Hoffmann, W., Struwe, W.B., Hahm, H.S., Gewinner, S., Schöllkopf, W., Seeberger, P.H., von Helden, G., Pagel, K.: Glycan fingerprinting using cold-ion infrared spectroscopy. Angew. Chem. Int. Ed. (2017). doi: 10.1002/anie.201702896 Google Scholar
  29. 29.
    Kamrath, M.Z., Garand, E., Jordan, P.A., Leavitt, C.M., Wolk, A.B., Van Stipdonk, M.J., Miller, S.J., Johnson, M.A.: Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions. J. Am. Chem. Soc. 133, 6440–6448 (2011)CrossRefGoogle Scholar
  30. 30.
    Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Evidence for a quasi-equilibrium distribution of states for bradykinin [M + 3H]3+ ions in the gas phase. J. Phys. Chem. B. 114, 7777–7783 (2010)CrossRefGoogle Scholar
  31. 31.
    Papadopoulos, G., Svendsen, A., Boyarkin, O.V., Rizzo, T.R.: Conformational distribution of bradykinin [bk+2 H]2+ revealed by cold ion spectroscopy coupled with FAIMS. J. Am. Soc. Mass Spectrom. 23, 1173–1181 (2012)CrossRefGoogle Scholar
  32. 32.
    Rizzo, T.R., Stearns, J.A., Boyarkin, O.V.: Spectroscopic studies of cold, gas-phase biomolecular ions. Int. Rev. Phys. Chem. 28, 481–515 (2009)CrossRefGoogle Scholar
  33. 33.
    Stearns, J.A., Seaiby, C., Boyarkin, O.V., Rizzo, T.R.: Spectroscopy and conformational preferences of gas-phase helices. Phys. Chem. Chem. Phys. 11, 125–132 (2009)CrossRefGoogle Scholar
  34. 34.
    Harvey, D.J., Merry, A.H., Royle, L., Campbell, M.P., Dwek, R.A., Rudd, P.M.: Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9, 3796–3801 (2009)CrossRefGoogle Scholar
  35. 35.
    Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • Chiara Masellis
    • 1
  • Neelam Khanal
    • 2
  • Michael Z. Kamrath
    • 1
    • 3
  • David E. Clemmer
    • 2
  • Thomas R. Rizzo
    • 1
  1. 1.Laboratoire de Chimie Physique MoléculaireÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of ChemistryIndiana UniversityBloomingtonUSA
  3. 3.ThunSwitzerland

Personalised recommendations