Infrared Multiple-Photon Dissociation Action Spectroscopy of the b2 + Ion from PPG: Evidence of Third Residue Affecting b2 + Fragment Structure

  • John C. Poutsma
  • Jonathan Martens
  • Jos Oomens
  • Phillipe Maitre
  • Vincent Steinmetz
  • Matthew Bernier
  • Mengxuan Jia
  • Vicki Wysocki
Focus: Bio-Ion Chemistry: Interactions of Biological Ions with Ions, Molecules, Surfaces, Electrons, and Light: Research Article

Abstract

Infrared multiple-photon dissociation (IRMPD) action spectroscopy was performed on the b2 + fragment ion from the protonated PPG tripeptide. Comparison of the experimental infrared spectrum with computed spectra for both oxazolone and diketopiperazine structures indicates that the majority of the fragment ion population has an oxazolone structure with the remainder having a diketopiperazine structure. This result is in contrast with a recent study of the IRMPD action spectrum of the PP b2 + fragment ion from PPP, which was found to be nearly 100% diketopiperazine (Martens et al. Int. J. Mass Spectrom. 2015, 377, 179). The diketopiperazine b2 + ion is thermodynamically more stable than the oxazolone but normally requires a trans/cis peptide bond isomerization in the dissociating peptide. Martens et al. showed through IRMPD action spectroscopy that the PPP precursor ion was in a conformation in which the first peptide bond is already in the cis conformation and thus it was energetically favorable to form the thermodynamically-favored diketopiperazine b2 + ion. In the present case, solution-phase NMR spectroscopy and gas-phase IRMPD action spectroscopy show that the PPG precursor ion has its first amide bond in a trans configuration suggesting that the third residue is playing an important role in both the structure of the peptide and the associated ring-closure barriers for oxazolone and diketopiperazine formation.

Graphical Abstract

Keywords

Peptide fragments IRMPD spectroscopy b2 ions 

Notes

Acknowledgements

This work was supported by the National Science Foundation, JCP: (CHEM:1464763), the National Institutes of Health, JCP (1R15GM116180-01), and the Ohio State University Eminent Scholar Funds. The authors acknowledge the excellent assistance from the FELIX and CLIO operators and staff. J.M. and J.O. are financially supported in part by NWO Chemical Sciences under VICI project no. 724.011.002. The authors also thank the Ohio State NMR Facility for obtaining and analyzing the PPG NMR spectrum.

Supplementary material

13361_2017_1659_MOESM1_ESM.pptx (73 kb)
ESM 1 (PPTX 73 kb)
13361_2017_1659_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20 kb)

References

  1. 1.
    Breci, L.A., Tabb, D.L., Yates III, J.R., Wysocki, V.H.: Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963 (2003)CrossRefGoogle Scholar
  2. 2.
    Li, W., Ji, L., Goya, J., Tan, G., Wysocki, V.H.: SQID: an intensity-incorporated protein identification algorithm for tandem mass spectrometry. J. Proteome Res. 10, 1593 (2011)CrossRefGoogle Scholar
  3. 3.
    Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: Why are B ions stable species in peptide spectra? J. Am. Soc. Mass Spectrom. 6, 1165 (1995)CrossRefGoogle Scholar
  4. 4.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508 (2005)CrossRefGoogle Scholar
  5. 5.
    Harrison, A.G., Csizmadia, I.G., Tang, T.H.: Structure and fragmentation of b2 ions in peptide mass spectra. J. Am. Soc. Mass Spectrom. 11, 427 (2000)CrossRefGoogle Scholar
  6. 6.
    Grewal, R.N., El Aribi, H., Harrison, A.G., Siu, K.W.M., Hopkinson, A.C.: Fragmentation of protonated tripeptides: the proline effect revisited. J. Phys. Chem. B. 108, 4899 (2004)CrossRefGoogle Scholar
  7. 7.
    Balta, B., Aviyente, V., Lifshitz, C.: Elimination of water from the carboxyl group of GlyGlyH+. J. Am. Soc. Mass Spectrom. 14, 1192 (2003)CrossRefGoogle Scholar
  8. 8.
    Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated diglycine decomposition: a computational study. J. Am. Soc. Mass Spectrom. 23, 621 (2012)CrossRefGoogle Scholar
  9. 9.
    Schwartz, B.L., Bursey, M.M.: Some proline substituent effects in the tandem mass spectrum of protonated pentaalanine. Biol. Mass Spectrom. 21, 92 (1992)CrossRefGoogle Scholar
  10. 10.
    Loo, J.A., Edmonds, C.A., Smith, R.D.: Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal. Chem. 65, 425 (1993)CrossRefGoogle Scholar
  11. 11.
    Vaisar, T., Urban, J.: Probing the proline effect in CID of protonated peptides. J. Mass Spectrom. 31, 1185 (1996)CrossRefGoogle Scholar
  12. 12.
    Bleiholder, C., Suhai, S., Harrison, A.G., Paizs, B.: Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala Xxx = Ala, Ser, Leu, Val, Phe, and Trp). J. Am. Soc. Mass Spectrom. 22, 1032 (2011)CrossRefGoogle Scholar
  13. 13.
    Raulfs, M.D.M., Breci, L., Bernier, M., Hamdy, O.M., Janiga, A., Wysocki, V., Poutsma, J.C.: Investigations of the mechanism of the proline effect in tandem mass spectrometry experiments: the pipecolic acid effect. J. Am. Soc. Mass Spectrom. 25, 1705 (2014)CrossRefGoogle Scholar
  14. 14.
    Pal, D., Chakrabarti, P.: Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J. Mol. Biol. 294, 271 (1999)CrossRefGoogle Scholar
  15. 15.
    Jorgensen, W.L., Gao, J.: Cis Trans energy difference for the peptide-bond in the gas-phase and in aqueous-solution. J. Am. Chem. Soc. 110, 4212 (1988)CrossRefGoogle Scholar
  16. 16.
    Gucinski, A.C., Chamot-Rooke, J., Steinmetz, V., Somogyi, A., Wysocki, V.H.: Influence of N-terminal residue composition on the structure of proline-containing b2 + ions. J. Phys. Chem. A 117, 1291 (2013)CrossRefGoogle Scholar
  17. 17.
    Thomas, K.M., Naduthambi, D., Zondlo, N.J.: Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction. J. Am. Chem. Soc. 128, 2216 (2006)CrossRefGoogle Scholar
  18. 18.
    Smith, L.L., Herrmann, K.A., Wysocki, V.H.: Investigation of gas-phase ion structure for proline-containing b2 ion. J. Am. Soc. Mass Spectrom. 17, 20 (2006)CrossRefGoogle Scholar
  19. 19.
    Knapp-Mohammady, M., Young, A.B., Paizs, B., Harrison, A.G.: Fragmentation of doubly protonated Pro-His-Xaa tripeptides: formation of b2(2+) ions. J. Am. Soc. Mass Spectrom. 20, 2135 (2009)CrossRefGoogle Scholar
  20. 20.
    Bleiholder, C., Suhai, S., Harrison, A.G., Paizs, B.: Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). J. Am. Soc. Mass Spectrom. 21, 1032 (2011)CrossRefGoogle Scholar
  21. 21.
    Masson, A., Kamrath, M.Z., Perez, M.A., Glover, M.S., Rothlisberger, U., Clemmer, D.E., Rizzo, T.R.: Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J. Am. Soc. Mass Spectrom. 26, 1444 (2015)CrossRefGoogle Scholar
  22. 22.
    Counterman, A.E., Clemmer, D.E.: Anhydrous polyproline helices and globules. J. Phys. Chem. B. 108, 4885 (2004)CrossRefGoogle Scholar
  23. 23.
    Avenoza, A., Busto, J.H., Cativiela, C., Peregrina, J.M., Rodriguez, F.: β-Turn modulation by the incorporation of c6Ser into Xaa-Pro dipeptide. Tetrahedron Lett. 43, 1429 (2002)CrossRefGoogle Scholar
  24. 24.
    Moradi, M., Babin, V., Roland, C., Darden, T.A., Sagui, C.: Conformations and free energy landscapes of polyproline peptides. Proc. Natl. Acad. Sci. U. S. A. 106, 20746 (2009)CrossRefGoogle Scholar
  25. 25.
    Unnithan, A.G., Myer, M.J., Veale, C.J., Danell, A.S.: MS/MS of protonated polyproline peptides: the influence of n-terminal protonation on dissociation. J. Am. Soc. Mass Spectrom. 18, 2198 (2007)CrossRefGoogle Scholar
  26. 26.
    Martens, J.K., Grzetic, J., Berden, G., Oomens, J.: Gas-phase conformations of small polyprolines and their fragment ions by IRMPD spectroscopy. Int. J. Mass Spectrom. 377, 179 (2015)CrossRefGoogle Scholar
  27. 27.
    Martens, J., Grzetic, J., Berden, G., Oomens, J.: Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat. Commun. 7, 11754 (2016)CrossRefGoogle Scholar
  28. 28.
    Martens, J.K., Berden, G., Gebhardt, C.R., Oomens, J.: Infrared ion spectroscopy in a nodified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev. Sci. Instrum. 87, doi: 10.1063/1.4964703 (2016)
  29. 29.
    Prazeres, R., Glotin, F., Insa, C., Jaroszynski, D.A., Ortega, J.M.: Two-color operation of a free-electron laser and applications in the mid-infrared. Eur. J. Mass Spectrom. 3, 87 (1998)Google Scholar
  30. 30.
    Aleese, L.M., Simon, A., McMahon, T.B., Ortega, J.M., Scuderi, D., Lemaire, J., Maitre, P.: Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap. Int. J. Mass Spectrom. 249, 14 (2006)CrossRefGoogle Scholar
  31. 31.
    Polfer, N.C., Oomens, J., Suhai, S., Paizs, B.: Spectroscopic and theoretical evidence for oxazolone ring formation in collision-induced dissociation of peptides. J. Am. Chem. Soc. 127, 17154 (2005)CrossRefGoogle Scholar
  32. 32.
    Yoon, S.H., Chamot-Rooke, J., Perkins, B.R., Hilderbrand, A.E., Poutsma, J.C., Wysocki, V.H.: IRMPD spectroscopy shows that AGG forms an oxazolone b2 + Ion. J. Am. Chem. Soc. 130, 17644 (2008)CrossRefGoogle Scholar
  33. 33.
    Stott, K., Stonehouse, J., Keeler, J., Hwang, T.-L., Shaka, A.J.: Excitation sculpting in high-resolution nuclear magnetic resonance spectroscopy: application to selective NOE experiments. J. Am. Chem. Soc. 117, 4199 (1995)CrossRefGoogle Scholar
  34. 34.
    Thrippleton, M.J., Keeler, J.: Elimination of zero-quantum interference in two-dimensional NMR spectra. Angew. Chem. Int. Ed. 42, 3938 (2003)CrossRefGoogle Scholar
  35. 35.
    Haupert, L.J., Poutsma, J.C., Wenthold, P.G.: The Curtin-Hammett principle in mass spectrometry. Acc. Chem. Res. 42, 1480 (2009)CrossRefGoogle Scholar
  36. 36.
    Curtin, D.Y.: Stereochemical control of organic reactions. Differences in behavior of diastereomers. 1. Ethane derivatives. The cis effect. Rec. Chem. Prog. 15, 111 (1954)Google Scholar
  37. 37.
    Morrison, L.J., Chamot-Rooke, J., Wysocki, V.H.: IR action spectroscopy shows competitive oxazolone and diketopiperazine formation in peptides depends on peptide length and identity of terminal residue in the departing fragment. Analyst 139, 2137 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Department of ChemistryCollege of William and MaryWilliamsburgUSA
  2. 2.Radboud University, Institute for Molecules and MaterialsFELIX LaboratoryNijmegenThe Netherlands
  3. 3.Van’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Laboratoire de Chimie Physique, CNRS UMR 8000Université Paris Sud, Université Paris Saclay, CNRSOrsayFrance
  5. 5.Department of ChemistryOhio State UniversityColumbusUSA

Personalised recommendations