Multiphoton Dissociation of Electrosprayed MegaDalton-Sized DNA Ions in a Charge-Detection Mass Spectrometer

  • Tristan Doussineau
  • Pierre Paletto
  • Philippe Dugourd
  • Rodolphe Antoine
Research Article

Abstract

Charge detection mass spectrometry in combination with a linear electrostatic ion trap coupled to a continuous wavelength infrared CO2 laser has been used to study the multiphoton dissociation of DNA macromolecular ions. Samples, with masses ranging from 2.23 to 31.5 MDa, include single strand circular M13mp18, double strand circular M13mp18, and double strand linear LambdaPhage DNA fragments. Their activation energies for unimolecular dissociation were determined. Activation energy values slightly increase as a function of the molecular weight. The most important result is the difference between the fragmentations observed for hybridized double-strands and dimers of single strands.

Graphical Abstract

Keywords

Charge detection mass-spectrometry Single-molecule Oligonucleotide Gas-phase Radiative dissociation Electrospray ions Nucleic-acids Activation Charge 

Supplementary material

13361_2014_1011_MOESM1_ESM.docx (21 kb)
ESM 1(DOCX 20 kb)

References

  1. 1.
    Huber, C.G., Oberacher, H.: Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 20, 310–343 (2001)CrossRefGoogle Scholar
  2. 2.
    Oberacher, H.: On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal. Bioanal. Chem. 391, 135–149 (2008)CrossRefGoogle Scholar
  3. 3.
    Seichter, D., Krebs, S., Förster, M.: Rapid and accurate characterisation of short tandem repeats by MALDI-TOF analysis of endonuclease cleaved RNA transcripts. Nucleic Acids Res. 32, e16 (2004)CrossRefGoogle Scholar
  4. 4.
    Hannis, J.C., Muddiman, D.C.: Genotyping short tandem repeats using flow injection and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 15, 348–350 (2001)CrossRefGoogle Scholar
  5. 5.
    Mehta, A.D., Rief, M., Spudich, J.A., Smith, D.A., Simmons, R.M.: Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999)CrossRefGoogle Scholar
  6. 6.
    Saleh, O.A., Allemand, J.-F., Croquette, V., Bensimon, D.: Single-molecule manipulation measurements of DNA transport proteins. Chem. Phys. Chem. 6, 813–818 (2005)Google Scholar
  7. 7.
    Howorka, S., Siwy, Z.L.: Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009)CrossRefGoogle Scholar
  8. 8.
    Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X.H., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008)CrossRefGoogle Scholar
  9. 9.
    Bruce, J.E., Cheng, X., Bakhtiar, R., Wu, Q., Hofstadler, S.A., Anderson, G.A., Smith, R.D.: Trapping, detection, and mass measurement of individual ions in a Fourier-transform ion-cyclotron resonance mass spectrometer. J. Am. Chem. Soc. 116, 7839–7847 (1994)CrossRefGoogle Scholar
  10. 10.
    Smith, R.D., Cheng, X., Bruce, J.E., Hofstadler, S.A., Anderson, G.A.: Trapping, detection, and reaction of very large single molecular-ions by mass-spectrometry. Nature 369, 137–139 (1994)CrossRefGoogle Scholar
  11. 11.
    Benner, W.H.: A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. Anal. Chem. 69, 4162–4168 (1997)CrossRefGoogle Scholar
  12. 12.
    Wu, J., McLuckey, S.A.: Gas-phase fragmentation of oligonucleotide ions. Int. J. Mass Spectrom. 237, 197–241 (2004)CrossRefGoogle Scholar
  13. 13.
    McLuckey, S.A., Vanberkel, G.J., Glish, G.L.: Tandem mass spectrometry of small, multiply charged oligonucleotides. J. Am. Soc. Mass Spectrom. 3, 60–70 (1992)CrossRefGoogle Scholar
  14. 14.
    Oberacher, H., Mayr, B.M., Huber, C.G.: Automated de novo sequencing of nucleic acids by liquid chromatography-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 32–42 (2004)CrossRefGoogle Scholar
  15. 15.
    Murray, K.K.: DNA sequencing by mass spectrometry. J. Mass Spectrom. 31, 1203–1215 (1996)CrossRefGoogle Scholar
  16. 16.
    Brodbelt, J.S., Wilson, J.J.: Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom. Rev. 28, 390–424 (2009)CrossRefGoogle Scholar
  17. 17.
    Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–158 (2004)CrossRefGoogle Scholar
  18. 18.
    Klassen, J., Schnier, P., Williams, E.: Blackbody infrared radiative dissociation of oligonucleotide anions. J. Am. Soc. Mass Spectrom. 9, 1117–1124 (1998)CrossRefGoogle Scholar
  19. 19.
    Schnier, P.D., Klassen, J.S., Strittmatter, E.E., Williams, E.R.: Activation energies for dissociation of double strand oligonucleotide anions: evidence for Watson-Crick base pairing in vacuo. J. Am. Chem. Soc. 120, 9605–9613 (1998)CrossRefGoogle Scholar
  20. 20.
    Doussineau, T., Bao, C.Y., Clavier, C., Dagany, X., Kerleroux, M., Antoine, R., Dugourd, P.: Infrared multiphoton dissociation tandem charge detection-mass spectrometry of single megadalton electrosprayed ions. Rev. Sci. Instrum. 82, 084104 (2011)CrossRefGoogle Scholar
  21. 21.
    Doussineau, T., Antoine, R., Santacreu, M., Dugourd, P.: Pushing the limit of infrared multiphoton dissociation to megadalton-size DNA ions. J. Phys. Chem. Lett. 3, 2141–2145 (2012)CrossRefGoogle Scholar
  22. 22.
    Antoine, R., Doussineau, T., Dugourd, P., Calvo, F.: Multiphoton dissociation of macromolecular ions at the single-molecule level. Phys. Rev. A 87, 013435 (2013)Google Scholar
  23. 23.
    Fuerstenau, S.D., Benner, W.H.: Molecular weight determination of megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1528–1538 (1995)CrossRefGoogle Scholar
  24. 24.
    Schultz, J.C., Hack, C.A., Benner, W.H.: Polymerase chain reaction products analyzed by charge detection mass spectrometry. Rapid Commun. Mass Spectrom. 13, 15–20 (1999)CrossRefGoogle Scholar
  25. 25.
    Schultz, J.C., Hack, C.A., Benner, W.H.: Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 305–313 (1998)CrossRefGoogle Scholar
  26. 26.
    Cheng, X., Camp, D.G., Wu, Q., Bakhtiar, R., Springer, D.L., Morris, B.J., Bruce, J.E., Anderson, G.A., Edmonds, C.G., Smith, R.D.: Molecular weight determination of plasmid DNA using electrospray ionization mass spectrometry. Nucleic Acids Res. 24, 2183–2189 (1996)CrossRefGoogle Scholar
  27. 27.
    Paech, K., Jockusch, R.A., Williams, E.R.: Slow infrared laser dissociation of biomolecules in the rapid energy exchange limit (vol 106A, pg 9763, 2002). J. Phys. Chem. A 107, 2596 (2003)CrossRefGoogle Scholar
  28. 28.
    Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)CrossRefGoogle Scholar
  29. 29.
    Bolest, T.C., White, J.H., Cozzarelli, N.R.: Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213, 931–951 (1990)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Tristan Doussineau
    • 1
    • 2
  • Pierre Paletto
    • 1
    • 2
  • Philippe Dugourd
    • 1
    • 2
  • Rodolphe Antoine
    • 1
    • 2
  1. 1.Université Claude Bernard Lyon1-CNRSUniversité de LyonVilleurbanne cedexFrance
  2. 2.Institut lumière matière, UMR5306VilleurbanneFrance

Personalised recommendations