Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

  • Erin Gemperline
  • Dhileepkumar Jayaraman
  • Junko Maeda
  • Jean-Michel Ané
  • Lingjun Li
Research Article


Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatulaSinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatulaSinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

Graphical Abstract


Nitrogen fixation Medicago truncatula Metabolites MALDI Orbitrap Mass spectrometry Imaging Q-Exactive 

Supplementary material

13361_2014_1010_MOESM1_ESM.pdf (186 kb)
ESM 1(PDF 186 kb)


  1. 1.
    Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R., Seefeldt, L.C.: Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114(8), 4041–4062 (2014)CrossRefGoogle Scholar
  2. 2.
    Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E., Gresshoff, P.M.: Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 52(1), 61–76 (2010)CrossRefGoogle Scholar
  3. 3.
    Lau, W., Fischbach, M.A., Osbourn, A., Sattely, E.S.: Key applications of plant metabolic engineering. PLoS Biol. 12(6), e1001879 (2014)CrossRefGoogle Scholar
  4. 4.
    Graham, P.H., Vance, C.P.: Legumes: importance and constraints to greater use. Plant Physiol. 131(3), 872–877 (2003)CrossRefGoogle Scholar
  5. 5.
    Dunn, M.F.: Key roles of microsymbiont amino acid metabolism in rhizobia–legume interactions. Crit. Rev. Microbiol (2014). doi:10.3109/1040841X.2013.856854
  6. 6.
    Udvardi, M., Poole, P.S.: Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013)CrossRefGoogle Scholar
  7. 7.
    Cook, D.: Medicago truncatula—a model in the making! Comment. Curr. Opin. Plant Biol. 2(4), 301–304 (1999)CrossRefGoogle Scholar
  8. 8.
    Benloch, R., Navarro, C., Beltran, J.P., Canas, L.A.: Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex Plant Reprod. 15(5), 231–241 (2003)Google Scholar
  9. 9.
    Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R.D., Burstin, J.: Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133(2), 664–682 (2003)CrossRefGoogle Scholar
  10. 10.
    Wang, H.L., Chen, J.H., Wen, J.Q., Tadege, M., Li, G.M., Liu, Y., Mysore, K.S., Ratet, P., Chen, R.J.: Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 146(4), 1759–1772 (2008)CrossRefGoogle Scholar
  11. 11.
    Branca, A., Paape, T.D., Zhou, P., Briskine, R., Farmer, A.D., Mudge, J., Bharti, A.K., Woodward, J.E., May, G.D., Gentzbittel, L., Ben, C., Denny, R., Sadowsky, M.J., Ronfort, J., Bataillon, T., Young, N.D., Tiffin, P.: Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc. Natl. Acad. Sci. U. S. A. 108(42), E864–E870 (2011)CrossRefGoogle Scholar
  12. 12.
    Samac, D.A., Penuela, S., Schnurr, J.A., Hunt, E.N., Foster-Hartnett, D., Vandenbosch, K.A., Gantt, J.S.: Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol. Plant Pathol. 12(8), 786–798 (2011)CrossRefGoogle Scholar
  13. 13.
    Rasmussen, S., Parsons, A.J., Jones, C.S.: Metabolomics of forage plants: a review. Ann. Bot. 110(6), 1281–1290 (2012)CrossRefGoogle Scholar
  14. 14.
    Venkateshwaran, M., Volkening, J.D., Sussman, M.R., Ané, J.M.: Symbiosis and the social network of higher plants. Curr. Opin. Plant Biol. 16(1), 118–127 (2013)CrossRefGoogle Scholar
  15. 15.
    White, J., Prell, J., James, E.K., Poole, P.: Nutrient sharing between symbionts. Plant Physiol. 144(2), 604–614 (2007)CrossRefGoogle Scholar
  16. 16.
    Draper, J., Rasmussen, S., Zubair, H.: Metabolite analysis and metabolomics in the study of biotrophic interactions between plant and microbes. Annu. Plant Rev. 43, 25–59 (2011)Google Scholar
  17. 17.
    Desbrosses, G.G., Kopka, J., Udvardi, M.K.: Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol. 137(4), 1302–1318 (2005)CrossRefGoogle Scholar
  18. 18.
    Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., Kopka, J., Udvardi, M.K.: Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J. 39(4), 487–512 (2004)CrossRefGoogle Scholar
  19. 19.
    Suzuki, H., Reddy, M.S.S., Naoumkina, M., Aziz, N., May, G.D., Huhman, D.V., Sumner, L.W., Blount, J.W., Mendes, P., Dixon, R.A.: Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic reprogramming in cell suspension cultures of the model legume Medicago truncatula. Planta 220(5), 696–707 (2005)CrossRefGoogle Scholar
  20. 20.
    Farag, M.A., Huhman, D.V., Lei, Z.T., Sumner, L.W.: Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68(3), 342–354 (2007)CrossRefGoogle Scholar
  21. 21.
    Farag, M.A., Huhman, D.V., Dixon, R.A., Sumner, L.W.: Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 146(2), 387–402 (2008)CrossRefGoogle Scholar
  22. 22.
    Harada, K., Fukusaki, E.: Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotech. 26(1), 47–52 (2009)CrossRefGoogle Scholar
  23. 23.
    Kueger, S., Steinhauser, D., Willmitzer, L., Giavalisco, P.: High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 70(1), 39–50 (2012)CrossRefGoogle Scholar
  24. 24.
    Lee, Y.J., Perdian, D.C., Song, Z.H., Yeung, E.S., Nikolau, B.J.: Use of mass spectrometry for imaging metabolites in plants. Plant J. 70(1), 81–95 (2012)CrossRefGoogle Scholar
  25. 25.
    Kaspar, S., Peukert, M., Svatoš, A., Matros, A., Mock, H.P.: MALDI-imaging mass spectrometry—an emerging technique in plant biology. Proteomics 11(9), 1840–1850 (2011)CrossRefGoogle Scholar
  26. 26.
    Gemperline, E., Li, L.: MALDI-mass spectrometric imaging for the investigation of metabolites in Medicago truncatula root nodules. J. Vis. Exp. 85, (2014). doi:10.3791/51434
  27. 27.
    Ye, H., Gemperline, E., Venkateshwaran, M., Chen, R., Delaux, P.M., Howes-Podoll, M., Ane, J.M., Li, L.: MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatulaSinorhizobium meliloti symbiosis. Plant J. 75(1), 130–145 (2013)CrossRefGoogle Scholar
  28. 28.
    Bjarnholt, N., Li, B., D'Alvise, J., Janfelt, C.: Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat. Prod. Rep. 31(6), 818–837 (2014)CrossRefGoogle Scholar
  29. 29.
    Catoira, R., Galera, C., de Billy, F., Penmetsa, R., Journet, E., Maillet, F., Rosenberg, C., Cook, D., Gough, C., Denarie, J.: Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12(9), 1647–1665 (2000)CrossRefGoogle Scholar
  30. 30.
    Oke, V., Long, S.R.: Bacteroid formation in the rhizobium-legume symbiosis. Curr. Opin. Microbiol. 2(6), 641–646 (1999)CrossRefGoogle Scholar
  31. 31.
    Robichaud, G., Garrard, K.P., Barry, J.A., Muddiman, D.C.: MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24(5), 718–721 (2013)CrossRefGoogle Scholar
  32. 32.
    Wolf, S., Schmidt, S., Muller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, (2010). doi:10.1186/1471-2105-11-148
  33. 33.
    Mitra, R.M., Long, S.R.: Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatulaSinorhizobium meliloti symbiosis. Plant Physiol. 134(2), 595–604 (2004)CrossRefGoogle Scholar
  34. 34.
    Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., Long, S.R.: A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327(5969), 1126–1129 (2010)CrossRefGoogle Scholar
  35. 35.
    Sprent, J.I., James, E.K.: Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol. 144(2), 575–581 (2007)CrossRefGoogle Scholar
  36. 36.
    Sprent, J. I.: Legume nodulation: a global perspective. pp. 79–94, Wiley-Blackwell, Chichester, U.K. (2009)Google Scholar
  37. 37.
    Sulieman, S., Tran, L.S.P.: Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit. Rev. Biotechnol. 33(3), 309–327 (2013)CrossRefGoogle Scholar
  38. 38.
    Schulze, J.: Source-sink manipulations suggest an N-feedback mechanism for the drop in N-2 fixation during pod-filling in pea and broad bean. J. Plant Physiol. 160(5), 531–537 (2003)CrossRefGoogle Scholar
  39. 39.
    Fischinger, S.A., Drevon, J.J., Claassen, N., Schulze, J.: Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation. J. Plant Physiol. 163(10), 987–995 (2006)CrossRefGoogle Scholar
  40. 40.
    Sulieman, S., Fischinger, S.A., Gresshoff, P.M., Schulze, J.: Asparagine as a major factor in the N-feedback regulation of N-2 fixation in Medicago truncatula. Physiol. Plant. 140(1), 21–31 (2010)CrossRefGoogle Scholar
  41. 41.
    Parsons, R., Stanforth, A., Raven, J.A., Sprent, J.I.: Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant, Cell Environ. 16(2), 125–136 (1993)CrossRefGoogle Scholar
  42. 42.
    Touraine, B.: Nitrate uptake by roots-transporters and root development. In: Amancio, S., Stulen, I. (eds.) Nitrogen Acquisition and Assimilation in Higher Plants, p. 1–34. Springer Netherlands, Dordrecht (2004)Google Scholar
  43. 43.
    Schubert, S.: The apoplast of indeterminate legume nodules: compartment for transport of amino acids, amides and sugars. In: Sattelmacher, B., Horst, W.J. (eds.) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions, pp. 445–454. Springer Netherlands, Dordrecht (2007)Google Scholar
  44. 44.
    Boscari, A., Van de Sype, G., Le Rudulier, D., Mandon, K.: Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Mol. Plant-Microbe Interact. 19(8), 896–903 (2006)CrossRefGoogle Scholar
  45. 45.
    Alloing, G., Travers, I., Sagot, B., Le Rudulier, D., Dupont, L.: Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J. Bacteriol. 188(17), 6308–6317 (2006)CrossRefGoogle Scholar
  46. 46.
    Luyten, E., Vanderleyden, J.: Survey of genes identified in Sinorhizobium meliloti spp., necessary for the development of an efficient symbiosis. Eur. J. Soil Biol 36(1), 1–26 (2000)CrossRefGoogle Scholar
  47. 47.
    Appleby, C.A.: Leghemoglobin and rhizobium respiration. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35, 443–478 (1984)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Erin Gemperline
    • 1
  • Dhileepkumar Jayaraman
    • 2
  • Junko Maeda
    • 2
  • Jean-Michel Ané
    • 2
  • Lingjun Li
    • 1
    • 3
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of AgronomyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations