Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations Using Kiloelectronvolt Helium Cations

Research Article

Abstract

A kiloelectronvolt beam of helium ions is used to ionize and fragment precursor peptide ions starting in the 1+ charge state. The electron affinity of helium cations (24.6 eV) exceeds the ionization potential of protonated peptides and can therefore be used to abstract an electron from—or charge exchange with—the isolated precursor ions. Kiloelectronvolt energies are used, (1) to overcome the Coulombic repulsion barrier between the cationic reactants, (2) to overcome ion-defocussing effects in the ion trap, and (3) to provide additional activation energy. Charge transfer dissociation (CTD) of the [M+H]+ precursor of Substance P gives product ions such as [M+H]2+• and a dominant series of a ions in both the 1+ and 2+ charge states. These observations, along with the less-abundant a + 1 ions, are consistent with ultraviolet photodissociation (UVPD) results of others and indicate that C–Cα cleavages are possible through charge exchange with helium ions. Although the efficiencies and timescale of CTD are not yet suitable for on-line chromatography, this new approach to ion activation provides an additional potential tool for the interrogation of gas phase ions.

Graphical Abstract

Keywords

Dissociation methods Charge transfer dissociation Peptide fragmentation Ion chemistry 

Supplementary material

13361_2014_989_MOESM1_ESM.docx (3.4 mb)
ESM 1(DOCX 3488 kb)

References

  1. 1.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)CrossRefGoogle Scholar
  2. 2.
    McLuckey, S.A.: Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614 (1992)CrossRefGoogle Scholar
  3. 3.
    Cooks, R.G.: Special feature: historical. Collision-induced dissociation: readings and commentary. J. Mass Spectrom. 30, 1215–1221 (1995)CrossRefGoogle Scholar
  4. 4.
    Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004)CrossRefGoogle Scholar
  5. 5.
    Palumbo, A.M., Reid, G.E.: Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal. Chem. 80, 9735–9747 (2008)CrossRefGoogle Scholar
  6. 6.
    Coon, J.J., Shabanowitz, J., Hunt, D.F., Syka, J.E.P.: Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 16, 880–882 (2005)CrossRefGoogle Scholar
  7. 7.
    Shaw, J.B., Kaplan, D.A., Brodbelt, J.S.: Activated ion negative electron transfer dissociation of multiply charged peptide anions. Anal. Chem. 85, 4721–4728 (2013)CrossRefGoogle Scholar
  8. 8.
    Xia, Y., Chrisman, P.A., Pitteri, S.J., Erickson, D.E., McLuckey, S.A.: Ion/molecule reactions of cation radicals formed from protonated polypeptides via gas-phase ion/ion electron transfer. J. Am. Chem. Soc. 128, 11792–11798 (2006)CrossRefGoogle Scholar
  9. 9.
    Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, Ü.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42, 5014–5030 (2013)CrossRefGoogle Scholar
  10. 10.
    Stephenson, J.L., McLuckey, S.A.: Charge reduction of oligonucleotide anions via gas-phase electron transfer to xenon cations. Rapid Commun. Mass Spectrom. 11, 875–880 (1997)CrossRefGoogle Scholar
  11. 11.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  12. 12.
    Yoo, H.J., Wang, N., Zhuang, S., Song, H., Håkansson, K.: Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. J. Am. Chem. Soc. 133, 16790–16793 (2011)CrossRefGoogle Scholar
  13. 13.
    Gardner, M.W., Vasicek, L.A., Shabbir, S., Anslyn, E.V., Brodbelt, J.S.: Chromogenic cross-linker for the characterization of protein structure by infrared multiphoton dissociation mass spectrometry. Anal. Chem. 80, 4807–4819 (2008)CrossRefGoogle Scholar
  14. 14.
    Madsen, J.A., Boutz, D.R., Brodbelt, J.S.: Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res. 9, 4205–4214 (2010)CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Cui, W., Thompson, M.S., Reilly, J.P.: Structures of a-type ions formed in the 157 nm photodissociation of singly-charged peptide ions. J. Am. Soc. Mass Spectrom. 17, 1315–1321 (2006)CrossRefGoogle Scholar
  16. 16.
    He, Y., Parthasarathi, R., Raghavachari, K., Reilly, J.P.: Photodissociation of charge tagged peptides. J. Am. Soc. Mass Spectrom. 23, 1182–1190 (2012)CrossRefGoogle Scholar
  17. 17.
    He, Y., Webber, N., Reilly, J.P.: 157 nm photodissociation of a complete set of dipeptide ions containing c-terminal arginine. J. Am. Soc. Mass Spectrom. 24, 675–683 (2013)CrossRefGoogle Scholar
  18. 18.
    Webber, N., He, Y., Reilly, J.P.: 157 nm photodissociation of dipeptide ions containing n-terminal arginine. J. Am. Soc. Mass Spectrom. 25, 196–203 (2014)CrossRefGoogle Scholar
  19. 19.
    Kalcic, C.L., Gunaratne, T.C., Jones, A.D., Dantus, M., Reid, G.E.: Femtosecond laser-induced ionization/dissociation of protonated peptides. J. Am. Chem. Soc. 131, 940–942 (2009)CrossRefGoogle Scholar
  20. 20.
    Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–158 (2004)CrossRefGoogle Scholar
  21. 21.
    Misharin, A.S., Silivra, O.A., Kjeldsen, F., Zubarev, R.A.: Dissociation of peptide ions by fast atom bombardment in a quadrupole ion trap. Rapid Commun. Mass Spectrom. 19, 2163–2171 (2005)CrossRefGoogle Scholar
  22. 22.
    Berkout, V.D.: Fragmentation of singly protonated peptides via interaction with metastable rare gas atoms. Anal. Chem. 81, 725–731 (2009)CrossRefGoogle Scholar
  23. 23.
    Berkout, V.D.: Fragmentation of protonated peptide ions via interaction with metastable atoms. Anal. Chem. 78, 3055–3061 (2006)CrossRefGoogle Scholar
  24. 24.
    Berkout, V.D., Doroshenko, V.M.: Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. Int. J. Mass Spectrom. 278, 150–157 (2008)CrossRefGoogle Scholar
  25. 25.
    Cook, S.L., Collin, O.L., Jackson, G.P.: Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues. J. Mass Spectrom. 44, 1211–1223 (2009)CrossRefGoogle Scholar
  26. 26.
    Cook, S.L., Jackson, G.P.: Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. J. Am. Soc. Mass Spectrom, 22, 1088–1099 (2011)Google Scholar
  27. 27.
    Cook, S.L., Jackson, G.P.: Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 221–232 (2011)CrossRefGoogle Scholar
  28. 28.
    Cook, S.L., Zimmermann, C.M., Singer, D., Fedorova, M., Hoffmann, R., Jackson, G.P.: Comparison of CID, ETD, and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides. J. Mass Spectrom. 47, 786–794 (2012)CrossRefGoogle Scholar
  29. 29.
    Fung, Y.M.E., Adams, C.M., Zubarev, R.A.: Electron ionization dissociation of singly and multiply charged peptides. J. Am. Chem. Soc. 131, 9977–9985 (2009)CrossRefGoogle Scholar
  30. 30.
    Budnik, B.A., Haselmann, K.F., Zubarev, R.A.: Electron detachment dissociation of peptide di-anions: an electron–hole recombination phenomenon. Chem. Phys. Lett. 342, 299–302 (2001)CrossRefGoogle Scholar
  31. 31.
    Ly, T., Julian, R.R.: Elucidating the tertiary structure of protein ions in vacuo with site-specific photoinitiated radical reactions. J. Am. Chem. Soc. 132, 8602–8609 (2010)CrossRefGoogle Scholar
  32. 32.
    Oh, J.Y., Moon, J.H., Kim, M.S.: Sequence- and site-specific photodissociation at 266 nm of protonated synthetic polypeptides containing a tryptophanyl residue. Rapid Commun. Mass Spectrom. 18, 2706–2712 (2004)CrossRefGoogle Scholar
  33. 33.
    Hodyss, R., Cox, H.A., Beauchamp, J.L.: Bioconjugates for tunable peptide fragmentation: free radical initiated peptide sequencing (FRIPS). J. Am. Chem. Soc. 127, 12436–12437 (2005)CrossRefGoogle Scholar
  34. 34.
    Soorkia, S., Dehon, C., Kumar, S.S., Pedrazzani, M., Frantzen, E., Lucas, B., Barat, M., Fayeton, J.A., Jouvet, C.: UV photofragmentation dynamics of protonated cystine: disulfide bond rupture. J. Phys. Chem. Lett. 5, 1110–1116 (2014)CrossRefGoogle Scholar
  35. 35.
    Pitteri, S.J., Chrisman, P.A., Hogan, J.M., McLuckey, S.A.: Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2•-. Anal. Chem. 77, 1831–1839 (2005)CrossRefGoogle Scholar
  36. 36.
    Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Electron-transfer ion/ion reactions of doubly protonated peptides: effect of elevated bath gas temperature. Anal. Chem. 77, 5662–5669 (2005)CrossRefGoogle Scholar
  37. 37.
    Liu, J., McLuckey, S.A.: Electron transfer dissociation: effects of cation charge state on product partitioning in ion/ion electron transfer to multiply protonated polypeptides. Int. J. Mass Spectrom. 330/332, 174–181 (2012)CrossRefGoogle Scholar
  38. 38.
    Ledvina, A.R., McAlister, G.C., Gardner, M.W., Smith, S.I., Madsen, J.A., Schwartz, J.C., Stafford, G.C., Syka, J.E.P., Brodbelt, J.S., Coon, J.J.: Infrared photoactivation reduces peptide folding and hydrogen-atom migration following ETD tandem mass spectrometry. Angew. Chem. Int. Ed. 48, 8526–8528 (2009)CrossRefGoogle Scholar
  39. 39.
    Swaney, D.L., McAlister, G.C., Wirtala, M., Schwartz, J.C., Syka, J.E.P., Coon, J.J.: Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79, 477–485 (2007)CrossRefGoogle Scholar
  40. 40.
    Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 62, 882–899 (1990)CrossRefGoogle Scholar
  41. 41.
    Covey, T.R., Huang, E.C., Henion, J.D.: Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. Anal. Chem. 63, 1193–1200 (1991)CrossRefGoogle Scholar
  42. 42.
    Tang, X.J., Thibault, P., Boyd, R.K.: Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal. Chem. 65, 2824–2834 (1993)CrossRefGoogle Scholar
  43. 43.
    Tsaprailis, G., Nair, H., Somogyi, Á., Wysocki, V.H., Zhong, W., Futrell, J.H., Summerfield, S.G., Gaskell, S.J.: Influence of secondary structure on the fragmentation of protonated peptides. J. Am. Chem. Soc. 121, 5142–5154 (1999)CrossRefGoogle Scholar
  44. 44.
    McLuckey, S.A., Mentinova, M.: Ion/neutral, ion/electron, ion/photon, and ion/ion interactions in tandem mass spectrometry: do we need them all? Are they enough? J. Am. Soc. Mass Spectrom. 22, 3–12 (2011)CrossRefGoogle Scholar
  45. 45.
    Chingin, K., Makarov, A., Denisov, E., Rebrov, O., Zubarev, R.A.: Fragmentation of positively-charged biological ions activated with a beam of high-energy cations. Anal. Chem. 86, 372–379 (2014)CrossRefGoogle Scholar
  46. 46.
    Budnik, B.A., Tsybin, Y.O., Håkansson, P., Zubarev, R.A.: Ionization energies of multiply protonated polypeptides obtained by tandem ionization in fourier transform mass spectrometers. J. Mass Spectrom. 37, 1141–1144 (2002)CrossRefGoogle Scholar
  47. 47.
    McMahon, T.B.: Thermochemical ladders: scaling the ramparts of gaseous ion energetics. Int. J. Mass Spectrom. 200, 187–199 (2000)CrossRefGoogle Scholar
  48. 48.
    Murray, K.K., Boyd, R.K., Eberlin, M.N., Langley, G.J., Li, L., Naito, Y.: Definitions of terms relating to mass spectrometry (IUPAC recommendations 2013). Pure Appl. Chem 85, 1515–1609 (2013)CrossRefGoogle Scholar
  49. 49.
    Berkout, V.D., Doroshenko, V.M.: ECD-like peptide fragmentation at atmospheric pressure. Int. J. Mass Spectrom. 325–327, 113–120 (2012)CrossRefGoogle Scholar
  50. 50.
    Cui, W., Thompson, M.S., Reilly, J.P.: Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. J. Am. Soc. Mass Spectrom. 16, 1384–1398 (2005)CrossRefGoogle Scholar
  51. 51.
    Papayannopoulos, I.A.: The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 14, 49–73 (1995)CrossRefGoogle Scholar
  52. 52.
    Robinson, M.R., Madsen, J.A., Brodbelt, J.S.: 193 nm ultraviolet photodissociation of imidazolinylated lys-n peptides for de novo sequencing. Anal. Chem. 84, 2433–2439 (2012)CrossRefGoogle Scholar
  53. 53.
    Diedrich, J.K., Julian, R.R.: Site-specific radical directed dissociation of peptides at phosphorylated residues. J. Am. Chem. Soc. 130, 12212–12213 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  1. 1.Department of Forensic and Investigative ScienceWest Virginia UniversityMorgantownUSA
  2. 2.C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownUSA

Personalised recommendations