Skip to main content
Log in

Automated Deconvolution of Overlapped Ion Mobility Profiles

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Presence of unresolved ion mobility (IM) profiles limits the efficient utilization of IM mass spectrometry (IM-MS) systems for isomer differentiation. Here, we introduce an automated ion mobility deconvolution (AIMD) computer software for streamlined deconvolution of overlapped IM-MS profiles. AIMD is based on a previously reported post-IM/collision-induced dissociation (CID) deconvolution approach [J. Am. Soc. Mass Spectrom. 23, 1873 (2012)] and, unlike the previously reported manual approach, it does not require resampling of post-IM/CID data. A novel data preprocessing approach is utilized to improve the accuracy and efficiency of the deconvolution process. Results from AIMD analysis of overlapped IM profiles of data from (1) Waters Synapt G1 for a binary mixture of isomeric peptides (amino acid sequences: GRGDS and SDGRG) and (2) Waters Synapt G2-S for a binary mixture of isomeric trisaccharides (raffinose and isomaltotriose) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Scheme 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Han, X., Yang, K., Gross, R.W.: Multidimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31, 134–178 (2012)

  2. Mishur, R.J., Rea, S.L.: Applications of mass spectrometry to metabolomics and metabonomics: detection of biomarkers of aging and of age-related diseases. Mass Spectrom. Rev. 31, 70–95 (2012)

    Article  CAS  Google Scholar 

  3. Marshall, A.G., Rodgers, R.P.: Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. U.S.A. 105, 18090–18095 (2008)

    Article  CAS  Google Scholar 

  4. Bensimon, A., Heck, A.J., Aebersold, R.: Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012)

    Article  CAS  Google Scholar 

  5. Domon, B., Aebersold, R.: Mass spectrometry and protein analysis. Science 312, 212–217 (2006)

    Article  CAS  Google Scholar 

  6. Chait, B.T.: Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006)

    Article  CAS  Google Scholar 

  7. Konermann, L., Pan, J., Liu, Y.H.: Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011)

    Article  CAS  Google Scholar 

  8. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)

    Article  CAS  Google Scholar 

  9. Xian, F., Hendrickson, C.L., Marshall, A.G.: High resolution mass spectrometry. Anal. Chem. 84, 708–719 (2012)

    Article  CAS  Google Scholar 

  10. Wenger, C.D., McAlister, G.C., Xia, Q., Coon, J.J.: Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled orbitrap mass spectrometer. Mol. Cell. Proteom. 9, 754–763 (2010)

    Article  CAS  Google Scholar 

  11. Peterson, A.C., McAlister, G.C., Quarmby, S.T., Griep-Raming, J., Coon, J.J.: Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS. Anal. Chem. 82, 8618–8628 (2010)

    Article  CAS  Google Scholar 

  12. Fattahi, A., Solouki, T.: Conformational analysis of metal complexed model peptides and their fragment ions using FT-ICR MS and gas-phase H/D exchange reactions. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics. Chicago, IL, 27–31 May 2001

  13. Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: experimental evidence for formation of different b fragment ion conformers/isomers during the gas-phase peptide sequencing. J. Am. Soc. Mass Spectrom. 21, 358–369 (2010)

    Article  CAS  Google Scholar 

  14. Solouki, T., Szulejko, J.E., Bennett, J.B., Graham, L.B.: A preconcentrator coupled to a GC/FTMS: advantages of self-chemical ionization, mass measurement accuracy, and high mass resolving power for GC applications. J. Am. Soc. Mass Spectrom. 15, 1191–1200 (2004)

    Article  CAS  Google Scholar 

  15. Solouki, T., Szulejko, J.E.: Bimolecular and unimolecular contributions to the disparate self-chemical ionizations of alpha-pinene and camphene isomers. J. Am. Soc. Mass Spectrom. 18, 2026–2039 (2007)

    Article  CAS  Google Scholar 

  16. Mondello, L., Tranchida, P.Q., Dugo, P., Dugo, G.: Comprehensive two-dimensional gas chromatography–mass spectrometry: a review. Mass Spectrom. Rev. 27, 101–124 (2008)

    Article  CAS  Google Scholar 

  17. Donato, P., Cacciola, F., Tranchida, P.Q., Dugo, P., Mondello, L.: Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications, and trends. Mass Spectrom. Rev. 31, 523–559 (2012)

    Article  CAS  Google Scholar 

  18. Kanu, A.B.., Dwivedi, P., Tam, M., Matz, L., Hill Jr., H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)

    Article  CAS  Google Scholar 

  19. Wyttenbach, T., Pierson, N.A., Clemmer, D.E., Bowers, M.T.: Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014)

    Article  CAS  Google Scholar 

  20. Rokushika, S., Hatano, H., Bairn, M.A., Hill, H.H.: Resolution measurement for ion mobility spectrometry. Anal. Chem. 57, 1902–1907 (1985)

    Article  CAS  Google Scholar 

  21. Siems, W.F., Wu, C., Tarver, E.E., Hill, H.H.: Measuring the resolving power of ion mobility spectrometers. Anal. Chem. 66, 4195–4201 (1995)

    Article  Google Scholar 

  22. Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)

    Article  CAS  Google Scholar 

  23. Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill Jr., H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)

    Article  CAS  Google Scholar 

  24. Dwivedi, P., Wu, C., Matz, L.M., Clowers, B.H., Siems, W.F., Hill Jr., H.H.: Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 78, 8200–8206 (2006)

    Article  CAS  Google Scholar 

  25. Dwivedi, P., Bendiak, B., Clowers, B.H., Hill Jr., H.H.: Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 18, 1163–1175 (2007)

    Article  CAS  Google Scholar 

  26. Shvartsburg, A.A., Singer, D., Smith, R.D., Hoffmann, R.: Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal. Chem. 83, 5078–5085 (2011)

    Article  CAS  Google Scholar 

  27. Ibrahim, Y.M., Shvartsburg, A.A., Smith, R.D., Belov, M.E.: Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal. Chem. 83, 5617–5623 (2011)

    Article  CAS  Google Scholar 

  28. Shvartsburg, A.A., Smith, R.D.: Accelerated high-resolution differential ion mobility separations using hydrogen. Anal. Chem. 83, 9159–9166 (2011)

    Article  CAS  Google Scholar 

  29. Li, H., Giles, K., Bendiak, B., Kaplan, K., Siems, W.F., Hill Jr., H.H.: Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 3231–3239 (2012)

    Article  CAS  Google Scholar 

  30. Fasciotti, M., Sanvido, G.B., Santos, V.G., Lalli, P.M., McCullagh, M., de Sa, G.F., Daroda, R.J., Peter, M.G., Eberlin, M.N.: Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. J. Mass Spectrom. 47, 1643–1647 (2012)

    Article  CAS  Google Scholar 

  31. Liu, Y., Clemmer, D.E.: Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal. Chem. 69, 2504–2509 (1997)

    Article  CAS  Google Scholar 

  32. Badman, E.R., Hoaglund-Hyzer, C.S., Clemmer, D.E.: Dissociation of different conformations of ubiquitin ions. J. Am. Soc. Mass Spectrom. 13, 719–723 (2002)

    Article  CAS  Google Scholar 

  33. Zucker, S.M., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22, 1477–1485 (2011)

    Article  CAS  Google Scholar 

  34. Lee, S., Li, Z., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: A new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)

    CAS  Google Scholar 

  35. Silveira, J.A., Fort, K.L., Kim, D., Servage, K.A., Pierson, N.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: stepwise dehydration and kinetic trapping of Substance P reveals the origin of peptide conformations. J. Am. Chem. Soc. 135, 19147–19153 (2013)

    Article  CAS  Google Scholar 

  36. Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)

    Article  CAS  Google Scholar 

  37. Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)

    Article  CAS  Google Scholar 

  38. Zekavat, B., Miladi, M., Becker, C., Munisamy, S.M., Solouki, T.: Combined use of post-ion mobility/collision-induced dissociation and chemometrics for b fragment ion analysis. J. Am. Soc. Mass Spectrom. 24, 1355–1365 (2013)

    Article  CAS  Google Scholar 

  39. Zekavat, B., Miladi, M., Al-Fdeilat, A.H., Somogyi, A., Solouki, T.: Evidence for sequence scrambling and divergent H/D exchange reactions of doubly-charged isobaric b-type fragment ions. J. Am. Soc. Mass Spectrom. 25, 226–236 (2014)

    Article  CAS  Google Scholar 

  40. Hoffmann, W., Hofmann, J., Pagel, K.: Energy-resolved ion mobility-mass spectrometry-A concept to improve the separation of isomeric carbohydrates. J. Am. Soc. Mass Spectrom. 25, 471–479 (2014)

    Article  CAS  Google Scholar 

  41. Pedrioli, P.G., Eng, J.K., Hubley, R., Vogelzang, M., Deutsch, E.W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R.H., Apweiler, R., Cheung, K., Costello, C.E., Hermjakob, H., Huang, S., Julian, R.K., Kapp, E., McComb, M.E., Oliver, S.G., Omenn, G., Paton, N.W., Simpson, R., Smith, R., Taylor, C.F., Zhu, W., Aebersold, R.: A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004)

    Article  CAS  Google Scholar 

  42. Hoyes, J.B., Bateman, R.H., Wildgoose, J.L.: A high resolution Orthogonal TOF with selectable drift length. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics. Long Beach, CA, 11–15 June 2000

  43. Bartmess, J.E., Georgiadis, R.M.: Empirical methods for determination of ionization gauge relative ensitivities for different gases. Vacuum 33, 149–153 (1983)

    Article  CAS  Google Scholar 

  44. Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)

    Article  CAS  Google Scholar 

  45. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  46. Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)

    Article  CAS  Google Scholar 

  47. Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T.A., Brusniak, M.Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour, S.L., Nuwaysir, L.M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadick, T., Holly, K., Eckels, J., Deutsch, E.W., Moritz, R.L., Katz, J.E., Agus, D.B., MacCoss, M., Tabb, D.L., Mallick, P.: A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012)

    Article  CAS  Google Scholar 

  48. Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 49, 612–617 (1977)

    Article  CAS  Google Scholar 

  49. Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta. 423, 51–68 (2000)

    Article  CAS  Google Scholar 

  50. Tauler, R., Smilde, A., Kowalski, B.: Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 9, 31–58 (1995)

    Article  CAS  Google Scholar 

  51. Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate financial support provided by Baylor University. They also thank Dr. Christopher Becker and Dr. C. Kevin Chambliss of Baylor University for providing the sugar samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touradj Solouki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantley, M., Zekavat, B., Harper, B. et al. Automated Deconvolution of Overlapped Ion Mobility Profiles. J. Am. Soc. Mass Spectrom. 25, 1810–1819 (2014). https://doi.org/10.1007/s13361-014-0963-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0963-3

Key words

Navigation