Automated Deconvolution of Overlapped Ion Mobility Profiles

  • Matthew Brantley
  • Behrooz Zekavat
  • Brett Harper
  • Rachel Mason
  • Touradj SoloukiEmail author
Research Article


Presence of unresolved ion mobility (IM) profiles limits the efficient utilization of IM mass spectrometry (IM-MS) systems for isomer differentiation. Here, we introduce an automated ion mobility deconvolution (AIMD) computer software for streamlined deconvolution of overlapped IM-MS profiles. AIMD is based on a previously reported post-IM/collision-induced dissociation (CID) deconvolution approach [J. Am. Soc. Mass Spectrom. 23, 1873 (2012)] and, unlike the previously reported manual approach, it does not require resampling of post-IM/CID data. A novel data preprocessing approach is utilized to improve the accuracy and efficiency of the deconvolution process. Results from AIMD analysis of overlapped IM profiles of data from (1) Waters Synapt G1 for a binary mixture of isomeric peptides (amino acid sequences: GRGDS and SDGRG) and (2) Waters Synapt G2-S for a binary mixture of isomeric trisaccharides (raffinose and isomaltotriose) are presented.

Graphical Abstract

Key words

Automated Deconvolution Ion mobility (IM) Isomer Mass spectrometry (MS) MATLAB 



The authors greatly appreciate financial support provided by Baylor University. They also thank Dr. Christopher Becker and Dr. C. Kevin Chambliss of Baylor University for providing the sugar samples used in this study.

Supplementary material

13361_2014_963_MOESM1_ESM.docx (52 kb)
ESM 1 (DOCX 51 kb)


  1. 1.
    Han, X., Yang, K., Gross, R.W.: Multidimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31, 134–178 (2012)Google Scholar
  2. 2.
    Mishur, R.J., Rea, S.L.: Applications of mass spectrometry to metabolomics and metabonomics: detection of biomarkers of aging and of age-related diseases. Mass Spectrom. Rev. 31, 70–95 (2012)CrossRefGoogle Scholar
  3. 3.
    Marshall, A.G., Rodgers, R.P.: Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. U.S.A. 105, 18090–18095 (2008)CrossRefGoogle Scholar
  4. 4.
    Bensimon, A., Heck, A.J., Aebersold, R.: Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012)CrossRefGoogle Scholar
  5. 5.
    Domon, B., Aebersold, R.: Mass spectrometry and protein analysis. Science 312, 212–217 (2006)CrossRefGoogle Scholar
  6. 6.
    Chait, B.T.: Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006)CrossRefGoogle Scholar
  7. 7.
    Konermann, L., Pan, J., Liu, Y.H.: Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011)CrossRefGoogle Scholar
  8. 8.
    Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)CrossRefGoogle Scholar
  9. 9.
    Xian, F., Hendrickson, C.L., Marshall, A.G.: High resolution mass spectrometry. Anal. Chem. 84, 708–719 (2012)CrossRefGoogle Scholar
  10. 10.
    Wenger, C.D., McAlister, G.C., Xia, Q., Coon, J.J.: Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled orbitrap mass spectrometer. Mol. Cell. Proteom. 9, 754–763 (2010)CrossRefGoogle Scholar
  11. 11.
    Peterson, A.C., McAlister, G.C., Quarmby, S.T., Griep-Raming, J., Coon, J.J.: Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS. Anal. Chem. 82, 8618–8628 (2010)CrossRefGoogle Scholar
  12. 12.
    Fattahi, A., Solouki, T.: Conformational analysis of metal complexed model peptides and their fragment ions using FT-ICR MS and gas-phase H/D exchange reactions. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics. Chicago, IL, 27–31 May 2001Google Scholar
  13. 13.
    Fattahi, A., Zekavat, B., Solouki, T.: H/D exchange kinetics: experimental evidence for formation of different b fragment ion conformers/isomers during the gas-phase peptide sequencing. J. Am. Soc. Mass Spectrom. 21, 358–369 (2010)CrossRefGoogle Scholar
  14. 14.
    Solouki, T., Szulejko, J.E., Bennett, J.B., Graham, L.B.: A preconcentrator coupled to a GC/FTMS: advantages of self-chemical ionization, mass measurement accuracy, and high mass resolving power for GC applications. J. Am. Soc. Mass Spectrom. 15, 1191–1200 (2004)CrossRefGoogle Scholar
  15. 15.
    Solouki, T., Szulejko, J.E.: Bimolecular and unimolecular contributions to the disparate self-chemical ionizations of alpha-pinene and camphene isomers. J. Am. Soc. Mass Spectrom. 18, 2026–2039 (2007)CrossRefGoogle Scholar
  16. 16.
    Mondello, L., Tranchida, P.Q., Dugo, P., Dugo, G.: Comprehensive two-dimensional gas chromatography–mass spectrometry: a review. Mass Spectrom. Rev. 27, 101–124 (2008)CrossRefGoogle Scholar
  17. 17.
    Donato, P., Cacciola, F., Tranchida, P.Q., Dugo, P., Mondello, L.: Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications, and trends. Mass Spectrom. Rev. 31, 523–559 (2012)CrossRefGoogle Scholar
  18. 18.
    Kanu, A.B.., Dwivedi, P., Tam, M., Matz, L., Hill Jr., H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)CrossRefGoogle Scholar
  19. 19.
    Wyttenbach, T., Pierson, N.A., Clemmer, D.E., Bowers, M.T.: Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014)CrossRefGoogle Scholar
  20. 20.
    Rokushika, S., Hatano, H., Bairn, M.A., Hill, H.H.: Resolution measurement for ion mobility spectrometry. Anal. Chem. 57, 1902–1907 (1985)CrossRefGoogle Scholar
  21. 21.
    Siems, W.F., Wu, C., Tarver, E.E., Hill, H.H.: Measuring the resolving power of ion mobility spectrometers. Anal. Chem. 66, 4195–4201 (1995)CrossRefGoogle Scholar
  22. 22.
    Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)CrossRefGoogle Scholar
  23. 23.
    Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill Jr., H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)CrossRefGoogle Scholar
  24. 24.
    Dwivedi, P., Wu, C., Matz, L.M., Clowers, B.H., Siems, W.F., Hill Jr., H.H.: Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 78, 8200–8206 (2006)CrossRefGoogle Scholar
  25. 25.
    Dwivedi, P., Bendiak, B., Clowers, B.H., Hill Jr., H.H.: Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 18, 1163–1175 (2007)CrossRefGoogle Scholar
  26. 26.
    Shvartsburg, A.A., Singer, D., Smith, R.D., Hoffmann, R.: Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal. Chem. 83, 5078–5085 (2011)CrossRefGoogle Scholar
  27. 27.
    Ibrahim, Y.M., Shvartsburg, A.A., Smith, R.D., Belov, M.E.: Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal. Chem. 83, 5617–5623 (2011)CrossRefGoogle Scholar
  28. 28.
    Shvartsburg, A.A., Smith, R.D.: Accelerated high-resolution differential ion mobility separations using hydrogen. Anal. Chem. 83, 9159–9166 (2011)CrossRefGoogle Scholar
  29. 29.
    Li, H., Giles, K., Bendiak, B., Kaplan, K., Siems, W.F., Hill Jr., H.H.: Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 3231–3239 (2012)CrossRefGoogle Scholar
  30. 30.
    Fasciotti, M., Sanvido, G.B., Santos, V.G., Lalli, P.M., McCullagh, M., de Sa, G.F., Daroda, R.J., Peter, M.G., Eberlin, M.N.: Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. J. Mass Spectrom. 47, 1643–1647 (2012)CrossRefGoogle Scholar
  31. 31.
    Liu, Y., Clemmer, D.E.: Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal. Chem. 69, 2504–2509 (1997)CrossRefGoogle Scholar
  32. 32.
    Badman, E.R., Hoaglund-Hyzer, C.S., Clemmer, D.E.: Dissociation of different conformations of ubiquitin ions. J. Am. Soc. Mass Spectrom. 13, 719–723 (2002)CrossRefGoogle Scholar
  33. 33.
    Zucker, S.M., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22, 1477–1485 (2011)CrossRefGoogle Scholar
  34. 34.
    Lee, S., Li, Z., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: A new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)Google Scholar
  35. 35.
    Silveira, J.A., Fort, K.L., Kim, D., Servage, K.A., Pierson, N.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: stepwise dehydration and kinetic trapping of Substance P reveals the origin of peptide conformations. J. Am. Chem. Soc. 135, 19147–19153 (2013)CrossRefGoogle Scholar
  36. 36.
    Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)CrossRefGoogle Scholar
  37. 37.
    Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)CrossRefGoogle Scholar
  38. 38.
    Zekavat, B., Miladi, M., Becker, C., Munisamy, S.M., Solouki, T.: Combined use of post-ion mobility/collision-induced dissociation and chemometrics for b fragment ion analysis. J. Am. Soc. Mass Spectrom. 24, 1355–1365 (2013)CrossRefGoogle Scholar
  39. 39.
    Zekavat, B., Miladi, M., Al-Fdeilat, A.H., Somogyi, A., Solouki, T.: Evidence for sequence scrambling and divergent H/D exchange reactions of doubly-charged isobaric b-type fragment ions. J. Am. Soc. Mass Spectrom. 25, 226–236 (2014)CrossRefGoogle Scholar
  40. 40.
    Hoffmann, W., Hofmann, J., Pagel, K.: Energy-resolved ion mobility-mass spectrometry-A concept to improve the separation of isomeric carbohydrates. J. Am. Soc. Mass Spectrom. 25, 471–479 (2014)CrossRefGoogle Scholar
  41. 41.
    Pedrioli, P.G., Eng, J.K., Hubley, R., Vogelzang, M., Deutsch, E.W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R.H., Apweiler, R., Cheung, K., Costello, C.E., Hermjakob, H., Huang, S., Julian, R.K., Kapp, E., McComb, M.E., Oliver, S.G., Omenn, G., Paton, N.W., Simpson, R., Smith, R., Taylor, C.F., Zhu, W., Aebersold, R.: A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004)CrossRefGoogle Scholar
  42. 42.
    Hoyes, J.B., Bateman, R.H., Wildgoose, J.L.: A high resolution Orthogonal TOF with selectable drift length. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics. Long Beach, CA, 11–15 June 2000Google Scholar
  43. 43.
    Bartmess, J.E., Georgiadis, R.M.: Empirical methods for determination of ionization gauge relative ensitivities for different gases. Vacuum 33, 149–153 (1983)CrossRefGoogle Scholar
  44. 44.
    Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)CrossRefGoogle Scholar
  45. 45.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  46. 46.
    Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)CrossRefGoogle Scholar
  47. 47.
    Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T.A., Brusniak, M.Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour, S.L., Nuwaysir, L.M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadick, T., Holly, K., Eckels, J., Deutsch, E.W., Moritz, R.L., Katz, J.E., Agus, D.B., MacCoss, M., Tabb, D.L., Mallick, P.: A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012)CrossRefGoogle Scholar
  48. 48.
    Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 49, 612–617 (1977)CrossRefGoogle Scholar
  49. 49.
    Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta. 423, 51–68 (2000)CrossRefGoogle Scholar
  50. 50.
    Tauler, R., Smilde, A., Kowalski, B.: Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 9, 31–58 (1995)CrossRefGoogle Scholar
  51. 51.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Matthew Brantley
    • 1
  • Behrooz Zekavat
    • 2
  • Brett Harper
    • 3
  • Rachel Mason
    • 1
  • Touradj Solouki
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of Texas at TylerTylerUSA
  2. 2.Department of Chemistry and BiochemistryBaylor UniversityWacoUSA
  3. 3.Institute of Biomedical StudiesBaylor UniversityWacoUSA

Personalised recommendations