Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System

  • Sarfaraz U. A. H. Syed
  • Gert B. Eijkel
  • Piet Kistemaker
  • Shane Ellis
  • Simon Maher
  • Donald F. Smith
  • Ron M. A. HeerenEmail author
Research Article


In this paper, we have employed an ion imaging approach to investigate the behavior of ions exiting from a quadrupole mass spectrometer (QMS) system that employs a radio frequency octopole ion guide before the QMS. An in-vacuum active pixel detector (Timepix) is employed at the exit of the QMS to image the ion patterns. The detector assembly simultaneously records the ion impact position and number of ions per pixel in every measurement frame. The transmission characteristics of the ion beam exiting the QMS are studied using this imaging detector under different operating conditions. Experimental results confirm that the ion spatial distribution exiting the QMS is heavily influenced by ion injection conditions. Furthermore, ion images from Timepix measurements of protein standards demonstrate the capability to enhance the quality of the mass spectral information and provide a detailed insight in the spatial distribution of different charge states (and hence different m/z) ions exiting the QMS.

Key words

Quadrupole Imaging MS Ion transmission Active pixel detector 



This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). The research is supported by the Comprehensive Analytical Science and Technology (COAST) foundation, which is the assigned program committee in the NWO Technology Area for Sustainable Chemistry (TASC) program. The authors acknowledge Ronald Buijs, Marc Duursma, and Frans Giskes of AMOLF for their contribution to the experiments, and also Professor Stephen Taylor and Dr. Ken Evans of the University of Liverpool for their advice and constructive analysis during the course of this work.


  1. 1.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)CrossRefGoogle Scholar
  2. 2.
    Hang, W., Lewis, C., Majidi, V.: Practical considerations when using radio frequency-only quadrupole ion guide for atmospheric pressure ionization sources with time-of-flight mass spectrometry. Analyst 128, 273–280 (2003)CrossRefGoogle Scholar
  3. 3.
    Paul, W.: Das elektrische massenfilter. Z. Phys. 40, 262–273 (1955)CrossRefGoogle Scholar
  4. 4.
    Brubaker, W.M., Tuul, J.: Performance studies of a quadrupole mass filter. Rev. Sci. Instrum. 35(8), 1007–1010 (1964)CrossRefGoogle Scholar
  5. 5.
    Dylla, H.F., Jarrell, J.A.: Transmission-resolution curves for a quadrupole mass spectrometer with separated rf and DC fields in the entrance aperture. Rev. Sci. Instrum. 47(3), 331–333 (1976)CrossRefGoogle Scholar
  6. 6.
    Batey, J.H.: Quadrupole gas analyzers. Vacuum 37, 659–668 (1987)CrossRefGoogle Scholar
  7. 7.
    Konenkov, N.V.: Influence of fringing fields on the acceptance of a quadrupole mass filter in the separation mode of the intermediate stability region. Int. J. Mass Spectrom. Ion Process. 123, 101–105 (1993)CrossRefGoogle Scholar
  8. 8.
    Gibson, J.R., Evans, K.G., Syed, S.U., Maher, S., Taylor, S.: A method of computing accurate 3D fields of a quadrupole mass filter and their use for prediction of filter behavior. J. Am. Soc. Mass Spectrom. 23, 1593–1601 (2012)CrossRefGoogle Scholar
  9. 9.
    Price, E.D., Todd, J.F.J.: Dynamic Mass Spectrometry, Vol 5, pp. 41–54. Heyden and Son, London (1978)Google Scholar
  10. 10.
    Birkinshaw, K., Hirst, D.M., Jarrold, M.F.: The focusing of an ion beam from a quadrupole mass filter using an electrostatic octopole lens. Phys. E Sci. Instrum. 11, 1037–1040 (1978)CrossRefGoogle Scholar
  11. 11.
    Kane, T.E., Angelico, V.J., Wysocki, V.H.: Use of condensation figures to image low-energy ion beam damage of monolayer films. Anal. Chem. 66, 3733–3736 (1994)CrossRefGoogle Scholar
  12. 12.
    Ferrer, R., Kwiatkowski, A.A., Bollen, G., Lincoln, D.L., Morrissey, D.J., Pang, G.K., Ringle, R., Savory, J., Schwarz, S.: Ion beam properties after mass filtering with a linear radiofrequency quadrupole. Nucl. Inst. Methods Phys. Res. A 735, 382–389 (2014)CrossRefGoogle Scholar
  13. 13.
    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Charge capacity limitations of radio frequency ion guides in their use for improved ion accumulation and trapping in mass spectrometry. Anal. Chem. 72, 970–978 (2000)CrossRefGoogle Scholar
  14. 14.
    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps. Rapid Commun. Mass Spectrom. 14, 1907–1913 (2000)CrossRefGoogle Scholar
  15. 15.
    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Modeling the ion density distribution in collisional cooling rf multipole ion guides. Int. J. Mass Spectrom. 222, 155–174 (2000)CrossRefGoogle Scholar
  16. 16.
    Grinfeld, D., Kopaev, I., Makarov, A., Monastyrskiy, M.: Space-charge effects in rf ion storage devices. ASMS, Colorado, USA (2011)Google Scholar
  17. 17.
    Gademann, G.H., Huismans, Y., Gijsbertsen, A., Jungmann, J., Visschers, J., Vrakking, M.J.J.: Velocity map imaging using an in-vacuum pixel detector. Rev. Sci. Instrum. 80, 103105–103107 (2009)CrossRefGoogle Scholar
  18. 18.
    Jungmann, J.H., MacAleese, L., Buijs, R., Giskes, F., de Snaijer, A., Visser, J., Visschers, J., Vrakking, M.J.J., Heeren, R.M.A.: Fast, high resolution mass spectrometry imaging using a Medipix pixelated detector. J. Am. Soc. Mass Spectrom. 21(12), 2023–2030 (2010)CrossRefGoogle Scholar
  19. 19.
    Jungmann, J.H., MacAleese, L., Visser, J., Vrakking, M.J.J., Heeren, R.M.A.: High dynamic range biomolecular ion microscopy with the Timepix detector. Anal. Chem. 83(20), 7888–7894 (2011)CrossRefGoogle Scholar
  20. 20.
    Bamberger, C., Renz, U., Bamberger, A.: Digital imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 22(6), 1079–1087 (2011)CrossRefGoogle Scholar
  21. 21.
    Kiss, A., Jungmann, J.H., Smith, D.F., Heeren, R.M.A.: Microscope mode secondary ion mass spectrometry imaging with a Timepix detector. Rev. Sci. Instrum. 84, 013704–7 (2013)Google Scholar
  22. 22.
    Jungmann, J.H., Smith, D.F., MacAleese, L., Klinkert, I., Visser, J., Heeren, R.M.A.: Biological tissue imaging with a position and time sensitive pixelated detector. J. Am. Soc. Mass Spectrom. 23, 1679–1688 (2012)CrossRefGoogle Scholar
  23. 23.
    Jungmann, J.H., Smith, D.F., Kiss, A., MacAleese, L., Buijs, R., Heeren, R.M.A.: An in-vacuum, pixelated detection system for mass spectrometric analysis and imaging of macromolecules. Int. J. Mass Spectrom. 341/342, 34–44 (2013)Google Scholar
  24. 24.
    Dawson, P.H.: Quadrupole Mass Spectrometry and Its Applications. Elsevier, Amsterdam (1976)Google Scholar
  25. 25.
    Douglas, D.J.: Linear quadrupoles in mass spectrometry. Mass Spectrom. Rev. 28, 937–960 (2009)CrossRefGoogle Scholar
  26. 26.
    Miller, P.E., Denton, M.B.: Transmission properties of rf-only quadrupole mass filter. Int. J. Mass Spectrom. Ion Process. 72, 223–238 (1986)CrossRefGoogle Scholar
  27. 27.
    Llopart, X.C., Dinapoli, M., Segundo, R.S., Pernigotti, D.E.: Medipix2, a 64 k pixel readout chip with 55 micron square elements working in single photon counting mode. IEEE Trans. Nucl. Sci. 49, 2279–2283 (2002)CrossRefGoogle Scholar
  28. 28.
    Llopart, X.C., Campbell, M.: First test measurements of a 64 k pixel readout chip working in single photon counting mode. Nucl. Inst. Methods A 509, 157–163 (2003)CrossRefGoogle Scholar
  29. 29.
    Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L., Wong, W.: Timepix, a 65 k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Inst. Methods Phys. Res. A 581, 485–494 (2007)CrossRefGoogle Scholar
  30. 30.
    Jungmann, J.H., Heeren, R.M.A.: Detection systems for mass spectrometry imaging—a perspective on novel developments with a focus on active pixel detectors. Rapid Commun. Mass Spectrom. 27, 1–23 (2013)CrossRefGoogle Scholar
  31. 31.
    Vallerga, J.M., Tremsin, J., Siegmund, A., Mikulec, O., Clark, B.A.: Optically sensitive Medipix2 detector for adaptive optics wavefront sensing. Nucl. Inst. Methods Phys. Res. A 546, 263–269 (2005)CrossRefGoogle Scholar
  32. 32.
    Turecek, D., Holy, T., Jakubek, J., Pospisil, S., Vykydal, Z.: Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix, and Medipix3 detectors. J. Instrum. 6, pp. C01046 (2011). doi: 10.1088/1748-0221/6/01/C01046
  33. 33.
    Barbu, I.T.M., van der Burgt, Y.E.M., Duursma, M.C., Takáts, Z., Seynen, M., Konijnenburg, M., Vijftigschild, A.J.M., Attema, I., Heeren, R.M.A.: A novel workflow control system for Fourier transform ion cyclotron resonance mass spectrometry allows for unique on-the-fly data-dependent decisions. Rapid Commun. Mass Spectrom. 22, 1245–1256 (2008)CrossRefGoogle Scholar
  34. 34.
    Tolmachev, A., Harkewicz, R., Alving, K., Masselon, C., Anderson, G., Rakov, V., Pasa-Tolic, L., Nikolaev, E., Belov, M., Udseth, H., Smith, R.D.: Radial stratification of ions as a function of m/z ratio in collisional cooling rf multipoles used as ion guides or ion traps. Proceedings of the 48th ASMS Conference, Long Beach, CA, June 11–15, p. 115 (CD ROM) (2000)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Sarfaraz U. A. H. Syed
    • 1
  • Gert B. Eijkel
    • 1
  • Piet Kistemaker
    • 1
  • Shane Ellis
    • 1
  • Simon Maher
    • 2
  • Donald F. Smith
    • 1
  • Ron M. A. Heeren
    • 1
    Email author
  1. 1.FOM Institute AMOLFAmsterdamThe Netherlands
  2. 2.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations