Advertisement

Characterization of Polylactides with Different Stereoregularity Using Electrospray Ionization Ion Mobility Mass Spectrometry

  • Kihyun Kim
  • Jong Wha Lee
  • Taihyun ChangEmail author
  • Hugh I. KimEmail author
Research Article

Abstract

We investigated the effect of stereoregularity on the gas-phase conformations of linear and cyclic polylactides (PLA) using electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) combined with molecular dynamics simulations. IM-MS analysis of PLA ions shows intriguing difference between the collision cross section (ΩD) value of poly-L-lactide (PLLA) and poly-LD-lactide (PLDLA) ions with respect to their chain architecture and stereoregularity. In the singly sodiated linear PLA (l-PLA∙Na+) case, both l-PLLA and l-PLDLA up to 11mer have very similar ΩD values, but the ΩD values of l-PLLA are greater than that of l-PLDLA ions for larger ions. In the case of cyclic PLA (c-PLA), c-PLLA∙Na+ is more compact than c-PLDLA∙Na+ for short PLA ions. However, c-PLLA exhibits larger ΩD value than c-PLDLA for PLA ions longer than 13mer. The origin of difference in the ΩD values was investigated using theoretical investigation of PLAs in the gas phase. The gas-phase conformation of PLA ions is influenced by Na+-oxygen coordination and the weak intramolecular hydrogen bond interaction, which are more effectively formed in more flexible chains. Therefore, the less flexible PLLA has a larger ΩD value than PLDLA. However, for short c-PLA, concomitant maximization of both Na+-oxygen coordination and hydrogen bond interaction is difficult due to the constricted chain freedom, which makes the ΩD value of PLAs in this range show a different trend compared with other PLA ions. Our study facilitates the understanding of correlation between stereoregularity of PLAs and their structure, providing potential utility of IM-MS to characterize stereoisomers of polymers.

Keywords

Ion mobility Polylactide Chiral polymer Electrospray ionization 

Notes

Acknowledgments

This work was supported by Basic Research program (grant no. 2013R1A1A2008974 and grant no. 2012R1A2A2A01015148) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, and Future Planning (MSIP).

Supplementary material

13361_2014_949_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1418 kb)

References

  1. 1.
    Drumright, R.E., Gruber, P.R., Henton, D.E.: Polylactic acid technology. Adv. Mater. 12, 1841–1846 (2000)CrossRefGoogle Scholar
  2. 2.
    Gupta, A., Kumar, V.: New emerging trends in synthetic biodegradable polymers–polylactide: a critique. Eur. Polym. J. 43, 4053–4074 (2007)CrossRefGoogle Scholar
  3. 3.
    Hassan, A., Balakrishnan, H., Akbari, A.: Polylactic acid based blends, composites and nanocomposites. In: Thomas, S., Visakh, P.M., Mathew, A.P. (eds.) Advances in natural polymers, pp. 361–396. Springer, Berlin (2013)CrossRefGoogle Scholar
  4. 4.
    Kharas, G., Sanchez-Riera, F., Severson, D.: Polymers of lactic acid. In: Doi, Y. (ed.) Plastics from microbes: microbial synthesis of polymers and polymer precursors, pp. 93–137. Hanser Publishers, Munich (1994)Google Scholar
  5. 5.
    Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2001)CrossRefGoogle Scholar
  6. 6.
    Henton, D.E., Gruber, P., Lunt, J., Randall, J.: Polylactic Acid Technology. In: Mohanty, A.K., Misra, M., Drzal, L. (eds.) Natural fibers, biopolymers, and biocomposites, pp. 527–577. Taylor and Francis, Boca Raton (2005)Google Scholar
  7. 7.
    Espartero, J., Rashkov, I., Li, S., Manolova, N., Vert, M.: NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29, 3535–3539 (1996)CrossRefGoogle Scholar
  8. 8.
    Thakur, K.A., Kean, R.T., Hall, E.S., Kolstad, J.J., Lindgren, T.A., Doscotch, M.A., Siepmann, J.I., Munson, E.J.: High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 30, 2422–2428 (1997)CrossRefGoogle Scholar
  9. 9.
    Zell, M.T., Padden, B.E., Paterick, A.J., Thakur, K.A., Kean, R.T., Hillmyer, M.A., Munson, E.J.: Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution solution NMR spectroscopy. Macromolecules 35, 7700–7707 (2002)CrossRefGoogle Scholar
  10. 10.
    Karasek, F.W.: Plasma chromatography. Anal. Chem. 46, 710A–720A (1974)CrossRefGoogle Scholar
  11. 11.
    Wyttenbach, T., von Helden, G., Bowers, M.T.: Gas-phase conformation of biological molecules: Bradykinin. J. Am. Chem. Soc. 118, 8355–8364 (1996)CrossRefGoogle Scholar
  12. 12.
    Wu, C., Klasmeier, J., Hill, H.H.: Atmospheric pressure ion mobility spectrometry of protonated and sodiated peptides. Rapid Commun. Mass Spectrom. 13, 1138–1142 (1999)CrossRefGoogle Scholar
  13. 13.
    Wu, C., Siems, W.F., Klasmeier, J., Hill, H.H.: Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal. Chem. 72, 391–395 (2000)CrossRefGoogle Scholar
  14. 14.
    Kim, H.I., Kim, H., Pang, E.S., Ryu, E.K., Beegle, L.W., Loo, J.A., Goddard, W.A., Kanik, I.: Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry. Anal. Chem. 81, 8289–8297 (2009)CrossRefGoogle Scholar
  15. 15.
    Kim, H., Kim, H.I., Johnson, P.V., Beegle, L.W., Beauchamp, J., Goddard, W.A., Kanik, I.: Experimental and theoretical investigation into the correlation between mass and ion mobility for choline and other ammonium cations in n2. Anal. Chem. 80, 1928–1936 (2008)CrossRefGoogle Scholar
  16. 16.
    Gruendling, T., Weidner, S., Falkenhagen, J., Barner-Kowollik, C.: Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym. Chem. 1, 599–617 (2010)CrossRefGoogle Scholar
  17. 17.
    Lee, S., Wyttenbach, T., Bowers, M.T.: Gas phase structures of sodiated oligosaccharides by ion mobility/ion chromatography methods. Int. J. Mass Spectrom. Ion Process. 167/168, 605–614 (1997)CrossRefGoogle Scholar
  18. 18.
    Gidden, J., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas phase conformations of synthetic polymers: poly(methyl methacrylate) oligomers cationized by sodium ions. Int. J. Mass Spectrom. 188, 121–130 (1999)CrossRefGoogle Scholar
  19. 19.
    Gidden, J., Wyttenbach, T., Batka, J., Weis, P., Jackson, A., Scrivens, J., Bowers, M.: Poly(ethylene terephthalate) oligomers cationized by alkali ions: structures, energetics, and their effect on mass spectra and the matrix-assisted laser desorption/ionization process. J. Am. Soc. Mass Spectrom. 10, 883–895 (1999)CrossRefGoogle Scholar
  20. 20.
    Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)CrossRefGoogle Scholar
  21. 21.
    Gidden, J., Bowers, M., Jackson, A., Scrivens, J.: Gas-phase conformations of cationized poly(styrene) oligomers. J. Am. Soc. Mass Spectrom. 13, 499–505 (2002)CrossRefGoogle Scholar
  22. 22.
    Jackson, A.T., Scrivens, J.H., Williams, J.P., Baker, E.S., Gidden, J., Bowers, M.T.: Microstructural and conformational studies of polyether copolymers. Int. J. Mass Spectrom. 238, 287–297 (2004)CrossRefGoogle Scholar
  23. 23.
    Song, J., Grün, C.H., Heeren, R.M.A., Janssen, H.-G., van den Brink, O.F.: High-resolution ion mobility spectrometry-mass spectrometry on poly(methyl methacrylate). Angew. Chem. Int. Ed. 49, 10168–10171 (2010)CrossRefGoogle Scholar
  24. 24.
    Larriba, C., Fernandez de la Mora, J.: The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B 116, 593–598 (2011)CrossRefGoogle Scholar
  25. 25.
    Maire, F., Coadou, G., Cravello, L., Lange, C.: Traveling wave ion mobility mass spectrometry study of low generation polyamidoamine dendrimers. J. Am. Soc. Mass Spectrom. 24, 238–248 (2013)CrossRefGoogle Scholar
  26. 26.
    von Helden, G., Wyttenbach, T., Bowers, M.T.: Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. Ion Process. 146, 349–364 (1995)CrossRefGoogle Scholar
  27. 27.
    Trimpin, S., Plasencia, M., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)CrossRefGoogle Scholar
  28. 28.
    Ude, S., Fernández de la Mora, J., Thomson, B.A.: Charge-induced unfolding of multiply charged polyethylene glycol ions. J. Am. Chem. Soc. 126, 12184–12190 (2004)CrossRefGoogle Scholar
  29. 29.
    De Winter, J., Lemaur, V., Ballivian, R., Chirot, F., Coulembier, O., Antoine, R., Lemoine, J., Cornil, J., Dubois, P., Dugourd, P., Gerbaux, P.: Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem. Eur. J. 17, 9738–9745 (2011)CrossRefGoogle Scholar
  30. 30.
    Dwivedi, P., Wu, C., Matz, L.M., Clowers, B.H., Siems, W.F., Hill, H.H.: Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 78, 8200–8206 (2006)CrossRefGoogle Scholar
  31. 31.
    Plasencia, M., Isailovic, D., Merenbloom, S., Mechref, Y., Clemmer, D.: Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008)CrossRefGoogle Scholar
  32. 32.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)CrossRefGoogle Scholar
  33. 33.
    Hoskins, J.N., Trimpin, S., Grayson, S.M.: Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules 44, 6915–6918 (2011)CrossRefGoogle Scholar
  34. 34.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill, H.H.: Ion mobility mass spectrometry analysis of isomeric disaccharide precursor, product, and cluster ions. Rapid Commun. Mass Spectrom. 27, 2699–2709 (2013)CrossRefGoogle Scholar
  35. 35.
    Rashid, A.M., Saalbach, G., Bornemann, S.: Discrimination of large maltooligosaccharides from isobaric dextran and pullulan using ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 28, 191–199 (2014)CrossRefGoogle Scholar
  36. 36.
    Ruotolo, B.T., McLean, J.A., Gillig, K.J., Russell, D.H.: The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 158–165 (2005)CrossRefGoogle Scholar
  37. 37.
    Smith, D.P., Giles, K., Bateman, R.H., Radford, S.E., Ashcroft, A.E.: Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 2180–2190 (2007)CrossRefGoogle Scholar
  38. 38.
    Robinson, E.W., Sellon, R.E., Williams, E.R.: Peak deconvolution in high-field asymmetric waveform ion mobility spectrometry (FAIMS) to characterize macromolecular conformations. Int. J. Mass Spectrom. 259, 87–95 (2007)CrossRefGoogle Scholar
  39. 39.
    Ruotolo, B.T., Benesch, J.L., Sandercock, A.M., Hyung, S.-J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  40. 40.
    Bagal, D., Zhang, H., Schnier, P.D.: Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Anal. Chem. 80, 2408–2418 (2008)CrossRefGoogle Scholar
  41. 41.
    Thalassinos, K., Scrivens, J.H.: Applications of traveling wave ion mobility-mass spectrometry. In: March, R.E., Todd, J.F.J. (eds.) Practical aspects of trapped ion mass spectrometry: applications of ion trapping devices, pp. 205–235. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  42. 42.
    Leary, J.A., Schenauer, M.R., Stefanescu, R., Andaya, A., Ruotolo, B.T., Robinson, C.V., Thalassinos, K., Scrivens, J.H., Sokabe, M., Hershey, J.W.: Methodology for measuring conformation of solvent-disrupted protein subunits using T-WAVE ion mobility MS: an investigation into eukaryotic initiation factors. J. Am. Soc. Mass Spectrom. 20, 1699–1706 (2009)CrossRefGoogle Scholar
  43. 43.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  44. 44.
    Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010)CrossRefGoogle Scholar
  45. 45.
    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81, 248–254 (2008)CrossRefGoogle Scholar
  46. 46.
    Valentine, S., Counterman, A., Clemmer, D.: A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J. Am. Soc. Mass Spectrom. 10, 1188–1211 (1999)CrossRefGoogle Scholar
  47. 47.
    Wyttenbach, T., Helden, G., Batka, J., Carlat, D., Bowers, M.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)CrossRefGoogle Scholar
  48. 48.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)CrossRefGoogle Scholar
  49. 49.
    Yoo, D.-K., Kim, D.: Production of optically pure poly(lactic acid) from lactic acid. Polym. Bull. 63, 637–651 (2009)CrossRefGoogle Scholar
  50. 50.
    Osaka, I., Watanabe, M., Takama, M., Murakami, M., Arakawa, R.: Characterization of linear and cyclic polylactic acids and their solvolysis products by electrospray ionization mass spectrometry. J. Mass Spectrom. 41, 1369–1377 (2006)CrossRefGoogle Scholar
  51. 51.
    De Winter, J., Lemaur, V., Marsal, P., Coulembier, O., Cornil, J., Dubois, P., Gerbaux, P.: Mechanistic study of the collision-induced dissociation of sodium-cationized polylactide oligomers: a joint experimental and theoretical investigation. J. Am. Soc. Mass Spectrom. 21, 1159–1168 (2010)CrossRefGoogle Scholar
  52. 52.
    Dubois, P., Jacobs, C., Jerome, R., Teyssie, P.: Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24, 2266–2270 (1991)CrossRefGoogle Scholar
  53. 53.
    Bero, M., Kasperczyk, J.: Coordination polymerization of lactides. 5. Influence of lactide structure on the transesterification processes in the copolymerization with ε-caprolactone. Macromol. Chem. Phys. 197, 3251–3258 (1996)CrossRefGoogle Scholar
  54. 54.
    Sarasua, J.-R., Rodríguez, N.L., Arraiza, A.L., Meaurio, E.: Stereoselective crystallization and specific interactions in polylactides. Macromolecules 38, 8362–8371 (2005)CrossRefGoogle Scholar
  55. 55.
    Kang, S., Zhang, G., Aou, K., Hsu, S.L., Stidham, H.D., Yang, X.: An analysis of poly(lactic acid) with varying regio regularity. J. Chem. Phys. 118, 3430–3436 (2003)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  1. 1.Department of ChemistryPohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.Division of Advanced Materials SciencePohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations